
The GNU PIES Manual
version 1.8, 13 August 2022

Sergey Poznyakoff.

Published by the Free Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301 USA
Copyright c© 2005–2022 Sergey Poznyakoff
Permission is granted to copy, distribute and/or modify this document under the terms
of the GNU Free Documentation License, Version 1.3 or any later version published by
the Free Software Foundation; with no Invariant Sections, and no specific Front-Cover and
Back-Cover texts.

i

Short Contents

1 Introduction . 1

2 Inter-Component Dependencies . 3

3 Pies Configuration File . 5

4 Pies Debugging . 41

5 Communicating with Running pies Instances 43

6 Init – parent of all processes . 51

7 Using Pies as Entrypoint for Docker Container 57

8 Configuration Examples . 63

9 Command Line Usage . 65

10 Pies Invocation . 67

11 How to Report a Bug . 71

A Inetd.conf Format . 73

B User-Group ACLs . 77

C Control API . 79

D GNU Free Documentation License . 85

Concept Index . 93

iii

Table of Contents

1 Introduction . 1

2 Inter-Component Dependencies 3

3 Pies Configuration File . 5
3.1 Configuration File Syntax . 6

3.1.1 Comments . 6
3.1.2 Statements . 6

3.2 Preprocessor . 8
3.2.1 Using M4 . 10
3.2.2 Using Custom Preprocessor . 10

3.3 The component Statement . 10
3.3.1 Component Prerequisites . 13
3.3.2 Component Privileges . 14
3.3.3 Resources . 14
3.3.4 Environment . 15

3.3.4.1 env: legacy syntax. 16
3.3.5 Early Environment Expansion . 18
3.3.6 Actions Before Startup . 18
3.3.7 Exit Actions . 19
3.3.8 Output Redirectors . 21
3.3.9 Inetd-Style Components . 21

3.3.9.1 Built-in Inetd Services . 23
3.3.9.2 TCPMUX Services . 24
3.3.9.3 Socket Environment Variables . 25
3.3.9.4 Exit Actions in Inetd Components 25

3.3.10 Meta1-Style Components . 26
3.3.11 Component Visibility ACLs . 26
3.3.12 Component Syntax Summary . 26

3.4 Notification . 30
3.5 Access Control Lists . 32
3.6 The Control Statement . 33
3.7 User Identities for Accessing Control Interface 35
3.8 Using inetd Configuration Files . 36
3.9 Using MeTA1 Configuration File . 37
3.10 Global Configuration . 38
3.11 Pies Privileges . 39
3.12 State Files . 40

4 Pies Debugging . 41

iv GNU Pies Manual

5 Communicating with Running pies Instances . . 43
5.1 piesctl id – Return Info About the Running Instance 43
5.2 Instance Management . 43
5.3 piesctl config – Configuration Management . 44
5.4 Component Management . 44
5.5 Init Process Management . 47
5.6 Piesctl Command Line Options . 47
5.7 Configuration for piesctl . 48

6 Init – parent of all processes 51
6.1 Runlevels . 52
6.2 Init Process Configuration . 52
6.3 Init Command Line . 55
6.4 Init Environment . 55
6.5 piesctl telinit . 55
6.6 The Telinit Command . 56

7 Using Pies as Entrypoint for Docker Container . . 57
7.1 Expanding Environment Variables in GNU m4 57
7.2 Using xenv . 58

8 Configuration Examples . 63
8.1 Simplest Case: Using Pies to Run Pmult . 63
8.2 Using Pies to Run Pmult and MeTA1 . 63
8.3 Running Pies as Inetd . 64

9 Command Line Usage . 65

10 Pies Invocation . 67

11 How to Report a Bug . 71

Appendix A Inetd.conf Format 73

Appendix B User-Group ACLs 77

Appendix C Control API . 79
C.1 /instance . 79
C.2 /conf . 79

C.2.1 /conf/files . 79
C.2.2 /conf/runime . 80

C.3 /programs . 80
C.4 /alive . 83
C.5 /runlevel . 83
C.6 /environ . 84

v

Appendix D GNU Free Documentation License . . 85

Concept Index . 93

1

1 Introduction

The name pies (pronounced ‘p-yes’) stands for ‘Program Invocation and Execution
Supervisor’. This utility starts and controls execution of external programs. In this
document these programs will be referred to as components. Each component is a
stand-alone program, which is executed in the foreground.

Upon startup, pies reads the list of components from its configuration file, starts them,
and remains in the background, controlling their execution. Each component is defined
by the name of the external program to be run and its arguments (command line). The
program is normally run directly (via exec), but you can instruct pies to run it via sh -c
as well.

The standard output and standard error streams of a component can be redirected to a
file or to an arbitrary syslog channel.

The way of handling each component, and in particular the action to be taken upon its
termination is determined by the component’s mode.

A respawn component is restarted each time it terminates. If it terminates too often,
pies puts it to sleep for certain time and logs that fact. This prevents badly configured
components from taking too much resources and allows administrator to take measures in
order to fix the situation. More specific action can be configured, depending on the exit
code of the component.

An inetd-style components is not started. Instead, pies opens a socket associated with
it and listens for connections on that socket. When a connection arrives, pies runs this
component to handle it. The connection is bound to the component’s ‘stdin’ and ‘stdout’
streams. The ‘stderr’ stream can be redirected to a file or to syslog, as described above.
This mode of operation is similar to that of the inetd utility.

Yet another type of components supported by pies are pass-style or meta1-style com-
ponents. As the name suggests, this type is designed expressly as a support for MeTA11

components, namely smtps. This type can be regarded as a mixture of the above two.
For each meta1-style component pies opens a socket and starts the component executable
program. Once the program is running, pies passes it the file descriptor of that socket,
through another preconfigured UNIX-style socket. Further handling of the socket is the
responsibility of the program itself.

An accept component is basically handled as ‘inetd’, except that after binding to the
socket pies immediately starts the program, without waiting for actual connections.

Finally, two special component modes are available. Startup components are run right
after pies startup, prior to running any other components. Their counterpart, shutdown
components are run before program termination, after all other components have finished.

Any number of components of all types can be handled simultaneously.

Components are started in the order of their appearance in the configuration file and ter-
minated in reverse order. This order can be modified by declaring component prerequisites
or dependents. This is described in the following chapter.

1 See http://www.meta1.org

http://www.meta1.org

2 GNU Pies Manual

As an exception, this order is reversed for the components read from MeTA1 configu-
ration files, either included by include-meta1 statement (see Section 3.9 [include-meta1],
page 37) or expressly supplied in the command line (see [config syntax], page 5).

3

2 Inter-Component Dependencies

A component ‘A’ may depend on another components, say ‘B’ and ‘C’, i.e. require them to
be running at the moment of its startup. Components ‘B’ and ‘C’ are called prerequisites
for ‘A’, while ‘A’ is called a dependency or dependent component of ‘B’, ‘C’.

Before restarting any component, pies verifies if it is a prerequisite for any other com-
ponents. If so, it first terminates its dependencies, restarts the component, and then starts
its dependencies again, in the order of their appearance in the configuration file.

5

3 Pies Configuration File

Pies reads its settings and component definitions from one or more configuration files. The
default configuration file is named pies.conf and is located in the system configuration
directory (in most cases /etc or /usr/local/etc, depending on how the package was
compiled). This file uses the native Pies configuration syntax. Apart from this format, the
program also understands configuration files in inetd and meta1 formats.

Alternative configuration files may be specified using --config-file (-c command line
option), e.g.:

pies --config-file filename

Any number of such options may be given. The files named in --config-file options
are processed in order of their appearance in the command line. By default, pies ex-
pects configuration files in its native format. This, however, can be changed by using the
--syntax=format command line option. This option instructs pies that any configuration
files given after it have are written in the specified format. Valid formats are:

‘pies’ Pies native configuration file format.

‘inetd’ Inetd-style configuration format.

‘meta1’ MeTA1-style format.

‘inittab’ Format of the /etc/inittab file (see Chapter 6 [Init Process], page 51).

The configuration file format set by the --syntax option remains in effect for all
--config-file options that follow it, up to the end of the command line or the next
occurrence of the --syntax option. This means that you can instruct pies to read several
configuration files of various formats in a single command line, e.g.:

pies --config-file /etc/pies.conf \
--syntax=inetd --config-file /etc/inetd.conf \
--syntax=meta1 --config-file /etc/meta1/meta1.conf

The rest of this chapter concerns the pies native configuration file format. You can re-
ceive a concise summary of all configuration directives any time by running pies --config-
help. The use of inetd configuration files is covered in Section 3.8 [inetd], page 36, and the
use of meta1 configuration files is described in Section 3.9 [include-meta1], page 37,

If any errors are encountered in the configuration file, the program reports them on the
standard error and exits with status 78.

To test the configuration file without actually starting the server, the --lint (-t) com-
mand line option is provided. It causes pies to check its configuration file and exit with
status 0 if no errors were detected, and with status 78 otherwise.

Before parsing, configuration file is preprocessed using m4 (see Section 3.2 [Preprocessor],
page 8). To see the preprocessed configuration without actually parsing it, use -E command
line option.

6 GNU Pies Manual

3.1 Configuration File Syntax

The configuration file consists of statements and comments.

There are three classes of lexical tokens: keywords, values, and separators. Blanks, tabs,
newlines and comments, collectively called white space are ignored except as they serve to
separate tokens. Some white space is required to separate otherwise adjacent keywords and
values.

3.1.1 Comments

Comments may appear anywhere where white space may appear in the configuration file.
There are two kinds of comments: single-line and multi-line comments. Single-line com-
ments start with ‘#’ or ‘//’ and continue to the end of the line:

This is a comment
// This too is a comment

The following constructs, appearing at the start of a line are treated specially:
‘#include’, ‘#include_once’, ‘#line’, ‘# num’ (where num is a decimal number). These
are described in detail in Section 3.2 [Preprocessor], page 8.

Multi-line or C-style comments start with the two characters ‘/*’ (slash, star) and
continue until the first occurrence of ‘*/’ (star, slash).

Multi-line comments cannot be nested.

3.1.2 Statements

A simple statement consists of a keyword and value separated by any amount of whitespace.
The statement is terminated with a semicolon (‘;’).

Examples of simple statements are:

pidfile /var/run/pies.pid;
source-info yes;
debug 10;

A keyword begins with a letter and may contain letters, decimal digits, underscores (‘_’)
and dashes (‘-’). Examples of keywords are: ‘group’, ‘control-file’.

A value can be one of the following:

number A number is a sequence of decimal digits.

boolean A boolean value is one of the following: ‘yes’, ‘true’, ‘t’ or ‘1’, meaning true,
and ‘no’, ‘false’, ‘nil’, ‘0’ meaning false.

unquoted string
An unquoted string may contain letters, digits, and any of the following char-
acters: ‘_’, ‘-’, ‘.’, ‘/’, ‘:’.

quoted string
A quoted string is any sequence of characters enclosed in double-quotes (‘"’).
A backslash appearing within a quoted string introduces an escape sequence,
which is replaced with a single character according to the following rules:

Chapter 3: Pies Configuration File 7

Sequence Replaced with
\a Audible bell character (ASCII 7)
\b Backspace character (ASCII 8)
\f Form-feed character (ASCII 12)
\n Newline character (ASCII 10)
\r Carriage return character (ASCII 13)
\t Horizontal tabulation character (ASCII 9)
\v Vertical tabulation character (ASCII 11)
\\ A single backslash (‘\’)
\" A double-quote.

Table 3.1: Backslash escapes

In addition, any occurrence of ‘\’ immediately followed by a newline character
(ASCII 10) is removed from the string. This allows to split long strings over
several physical lines, e.g.:

"a long string may be\
split over several lines"

If the character following a backslash is not one of those specified above, the
backslash is ignored and a warning is issued.

Here-document
Here-document is a special construct that allows to introduce strings of text
containing embedded newlines.
The <<word construct instructs the parser to read all the following lines up to
the line containing only word, with possible trailing blanks. Any lines thus read
are concatenated together into a single string. For example:

<<EOT
A multiline
string
EOT

Body of a here-document is interpreted the same way as double-quoted string,
unless word is preceded by a backslash (e.g. ‘<<\EOT’) or enclosed in double-
quotes, in which case the text is read as is, without interpretation of escape
sequences.
If word is prefixed with - (a dash), then all leading tab characters are stripped
from input lines and the line containing word. Furthermore, if - is followed
by a single space, all leading whitespace is stripped from them. This allows to
indent here-documents in a natural fashion. For example:

<<- TEXT
All leading whitespace will be
ignored when reading these lines.

TEXT

It is important that the terminating delimiter be the only token on its line.
The only exception to this rule is allowed if a here-document appears as the

8 GNU Pies Manual

last element of a statement. In this case a semicolon can be placed on the same
line with its terminating delimiter, as in:

help-text <<-EOT
A sample help text.

EOT;

list A list is a comma-separated list of values. Lists are delimited by parentheses.
The following example shows a statement whose value is a list of strings:

dependents (pmult, auth);

In any case where a list is appropriate, a single value is allowed without being
a member of a list: it is equivalent to a list with a single member. This means
that, e.g. ‘dependents auth;’ is equivalent to ‘dependents (auth);’.

A block statement introduces a logical group of another statements. It consists of a
keyword, followed by an optional value, and a sequence of statements enclosed in curly
braces, as shown in the example below:

component multiplexor {
command "pmult";

}

The closing curly brace may be followed by a semicolon, although this is not required.

3.2 Preprocessor

Before parsing, configuration file is preprocessed. This goes in three stages. First, include
directives are expanded. An include directive begins with a ‘#’ sign at the beginning of
a line, followed by the word ‘include’ or ‘include_once’. Any amount of whitespace is
allowed between the ‘#’ and the word. The entire text up to the end of the line is removed
and replaced using the following rules:

#include file

The contents of the file file is included.

If file contains wildcard characters (‘*’, ‘[’, ‘]’ or ‘?’), it is interpreted as shell
globbing pattern and all files matching that pattern are included, in lexico-
graphical order. If no matching files are found, the directive is replaced with
an empty line.

Otherwise, the named file is included. Unless file is an absolute file name, it
will be searched relative to the current working directory. An error message
will be issued if it does not exist.

#include_once file

Same as #include, except that, if the file has already been included, it will not
be included again.

The obtained material is then passed to external preprocessor. By default, pies uses
GNU m4. This powerful macro processor is described in GNU M4 macro processor. For the
rest of this subsection we assume the reader is sufficiently acquainted with the m4 macro
processor.

Chapter 3: Pies Configuration File 9

The external preprocessor is invoked with the following two flags: -s flag, instructing
it to include line synchronization information in its output, and -P, which changes all m4
built-in macro names by prefixing them with ‘m4_’.

The following command line options are passed to m4 verbatim:

--define=sym[=value]
-D symbol[=value]

Define symbol sym as having value, or empty, if the value is not given.

--undefine=sym
-U sym Undefine symbol sym.

The --include-directory=dir or -I dir option causes the option -I dir to be ap-
pended to the preprocessor command line. This option modifies the m4 include search path
(see Section “Search Path” in GNU M4 macro processor).

Finally, the following two options are appended:

-I $prefix/share/pies/include
-I $prefix/share/pies/1.8/include

(where $prefix stands for installation prefix chosen when the package was built. Normally
it is /usr.) This step can be disabled using the --no-include option.

These provide the default search path.
The name of the source file is appended to the command line, and the constructed

command is executed via $SHELL -c and its output is then passed to the configuration
parser. When parsing, the following constructs appearing at the beginning of a line are
handled specially:

#line num

#line num "file"
This line causes the parser to believe, for purposes of error diagnostics, that
the line number of the next source line is given by num and the current input
file is named by file. If the latter is absent, the remembered file name does not
change.

num "file"
This is a special form of #line statement, understood for compatibility with
the c preprocessor.

#warning "text"
Emits text as a warning.

#error "text"
Emits text as an error message. Further parsing continues, but will end with
failure.

#abend "text"
Emits text as an error message and stops further processing immediately.

If #error or #abend is encountered, the effect is the same as if syntax error has been
detected. If it occurs at pies startup, the program will terminate abnormally. If it occurs
as part of the reload sequence in a running instance of pies, the configuration file will be
rejected and old configuration will remain in effect.

10 GNU Pies Manual

3.2.1 Using M4� �
Editor’s note:

This node is to be written.
 	
This subsection gives some tips on using the default preprocessor.

3.2.2 Using Custom Preprocessor

The default preprocessor can be changed (or even disabled) at compile time as well as
on the runtime. When invoked with the --help option pies reports, among others, the
preprocessor it is configured to use and the default include search path.

To disable preprocessing, use the --no-preprocessor command line option.

To change the default preprocessor at runtime, use the --preprocessor option. Its
argument is the initial preprocessor command line. Depending on the pies command line,
it can be further modified by appending new options as described in [additional preprocessor
options], page 9.

When selecting another preprocessor, please bear in mind that pies assumes that the
preprocessor program understands the following three options:

-D name[=value]
Define the preprocessor symbol name.

-I dir Add the directory dir to the preprocessor search path for include files.

-U name Undefine the preprocessor symbol name.

pies never passes -D and -U options, except as if these were passed to it in the command
line.

However, it normally adds one or more -I options to configure the default search path.

If the preprocessor of your choice doesn’t support some or any of these options, there
are several possible solutions.

• If the preprocessor doesn’t support -D and -U options, don’t pass them in the pies
command line.

• If it does not support the -I option, run pies with the --no-include option or create
a wrapper script which will consume all -I options without affecting the preprocessor
command line.

For an example of using alternative preprocessor, See Section 7.2 [xenv], page 58.

3.3 The component Statement

[Config]component
The component statement defines a new component:

component tag {
...

}

Chapter 3: Pies Configuration File 11

The component is identified by its tag, which is given as argument to the component
keyword. Component declarations with the same tags are merged into a single declaration.

The following are the basic statements which are allowed within the component block:

[Config: component]mode mode
Declare the type (style) of the component. Following are the basic values for mode:

exec
respawn Define a ‘respawn’ component (see [respawn], page 1). This is the default.

inetd
nostartaccept

Define an ‘inetd-style’ component (see [inetd-style], page 1).

pass
pass-fd Define a ‘meta1-style’ component (see [meta1-style], page 1).

accept Define a ‘accept-style’ component (see [accept-style], page 1).

startup The component is run right after startup. Prior to starting any other
components, pies will wait for all startup components to terminate.

shutdown These components are started as a part of program shutdown sequence,
after all regular components have terminated. See [shutdown sequence],
page 39, for a detailed discussion.

When run as init process (see Chapter 6 [Init Process], page 51), the following modes
are also allowed:

boot The process will be executed during system boot. The ‘runlevel’ settings
are ignored.

bootwait The process will be executed during system boot. No other components
will be started until it has terminated. The ‘runlevel’ settings are ig-
nored.

ctrlaltdel
The process will be executed when pies receives the SIGINT signal.
Normally this means that the CTRL-ALT-DEL combination has been
pressed on the keyboard.

kbrequest
The process will be executed when a signal from the keyboard handler is
received that indicates that a special key combination was pressed on the
console keyboard.

once The process will be executed once when the specified runlevel is entered.

ondemand The process will be executed when the specified ondemand runlevel is
called (‘a’, ‘b’ and ‘c’). No real runlevel change will occur (see [Ondemand
runlevels], page 52). The process will remain running across any eventual
runlevel changes and will be restarted whenever it terminates, similarly
to respawn components.

12 GNU Pies Manual

powerfail
The process will be executed when the power goes down. Pies will not
wait for the process to finish.

powerfailnow
The process will be executed when the power is failing and the battery
of the external UPS is almost empty.

powerokwait
The process will be executed as soon as pies is informed that the power
has been restored.

powerwait
The process will be executed when the power goes down. Pies will wait
for the process to finish before continuing.

sysinit The process will be executed during system boot, before any boot or
bootwait entries. The ‘runlevel’ settings are ignored.

wait The process will be started once when the specified runlevel is entered.
Pies will wait for its termination before starting any other processes.

[Config: component]command string
Command line to run. string is the full command line. Its first word (in the shell
sense) is the name of the program to invoke.

[Config: component]program name
Full file name of the program to run. When supplied, pies will execute the program
name instead of the first word in the command statement. The latter, however, will
be passed to the running program as argv[0].

[Config: component]flags (flag-list)
Define flags for this component. The flag-list is a comma-separated list of flags. Valid
flags are:

disable This component is disabled, i.e. pies will parse and remember its settings,
but will not start it.

nullinput
Do not close standard input. Redirect it from /dev/null instead. Use
this option with commands that require their standard input to be open
(e.g. pppd nodetach).

precious Mark this component as precious. Precious components are never dis-
abled by pies, even if they respawn too fast.

shell Run command as /bin/sh -c "$command". Use this flag if command con-
tains shell-specific features, such as I/O redirections, pipes, variables or
the like. You can change the shell program using the program statement.
For example, to use Korn shell:

component X {
flags shell;
program "/bin/ksh";

Chapter 3: Pies Configuration File 13

command "myprog $HOME";
}

expandenv
Expand environment variables in the ‘command’ statement prior to run-
ning it. When used together with the ‘shell’ flag, this flag produces a
warning and has no effect. See Section 3.3.5 [Early Environment Expan-
sion], page 18, for a detailed discussion.

wait This flag is valid only for ‘inetd’ components. It has the same meaning as
‘wait’ in inetd.conf file, i.e. it tells pies to wait for the server program
to return. See Appendix A [inetd configuration], page 73.

tcpmux This is a TCPMUX component. See Section 3.3.9.2 [TCPMUX], page 24.

tcpmuxplus
This is a TCPMUX+ component. See Section 3.3.9.2 [TCPMUX], page 24.

internal This is an internal inetd component. See Section 3.3.9.1 [builtin], page 23.

sockenv This inetd component wants socket description variables in its environ-
ment. See Section 3.3.9.3 [sockenv], page 25.

resolve When used with ‘sockenv’, the LOCALHOST and REMOTEHOST environment
variables will contain resolved host names, instead of IP addresses.

siggroup This flag affects the behavior of pies when a stopped process fails to
terminate within a predefined timeout (see [shutdown-timeout], page 39.
Normally pies would send the ‘SIGKILL’ signal to such a process. If this
flag is set, pies would send ‘SIGKILL’ to the process group of this process
instead.

[Config: component]sigterm sig
Defines signal which should be sent to terminate this component. The default
is SIGTERM. The argument sig is either the name of a signal defined in
/usr/include/signal.h, or ‘SIG+n’, where n is signal number.

The following subsections describe the rest of ‘component’ substatements.

3.3.1 Component Prerequisites

Prerequisites (see [component prerequisite], page 3) for a component are declared using the
following statement:

[Config: component]prerequisites tag-list
The argument is either a list of component tags or one of the following words:

all Declare all components defined so far as prerequisites for this one.

none No prerequisites. This is the default.

If you wish, you can define dependents, instead of prerequisites:

[Config: component]dependents tag-list
Declare dependents for this component. var-list is a list of component tags.

14 GNU Pies Manual

3.3.2 Component Privileges

The following statements control privileges the component is executed with.

[Config: component]user user-name
Start component with the UID and GID of this user.

[Config: component]group group-list
Retain supplementary groups, specified in group-list.

[Config: component]allgroups bool
Retain all supplementary groups of which the user (as given with user statement)
is a member. This is the default for components specified in meta1.conf file (see
Section 3.9 [include-meta1], page 37).

3.3.3 Resources

[Config: component]limits string
Impose limits on system resources, as defined by the string argument. It consists
of commands, optionally separated by any amount of whitespace. A command is a
single command letter followed by a number, that specifies the limit. The command
letters are case-insensitive and coincide with those used by the shell ulimit utility:

Command The limit it sets
A max address space (KB)
C max core file size (KB)
D max data size (KB)
F maximum file size (KB)
M max locked-in-memory address space (KB)
N max number of open files
R max resident set size (KB)
S max stack size (KB)
T max CPU time (MIN)
U max number of processes
P process priority -20..20 (negative = high priority)

Table 3.2: Limit Command Letters
For example:

limits T10 R20 U16 P20

Additionally, the command letter ‘L’ is recognized. It is reserved for future use
(‘number of logins’ limit) and is ignored in version 1.8.

[Config: component]umask number
Set the umask. The number must be an octal value not greater than ‘777’. The
default umask is inherited at startup.

[Config: component]max-instances n
Sets the maximum number of simultaneously running instances of this component.

Chapter 3: Pies Configuration File 15

3.3.4 Environment

Normally all components inherit the environment of the master pies process. You can
modify this environment using the env statement. It has two variants: compound and
legacy. The legacy one-line statement was used in pies versions up to 1.3 and is still
retained for backward compatibility. It is described in Section 3.3.4.1 [env legacy syntax],
page 16. This subsection describes the modern compound syntax.

The env statement can also be used in global context, in which case it modifies envi-
ronment for the master pies program, i.e. the environment that will be inherited by all
components (see Section 3.10 [Global Configuration], page 38). The global env is available
only in compound syntax described here.

[Config: component]env { ... }
The compound env statement has the following syntax:

env {
clear;
keep pattern;
set "name=value";
eval "value";
unset pattern;

}

Statements inside the env block define operations that modify the environment. The
clear and keep statements are executed first. Then, the set and unset statements are
applied in the order of their appearance in the configuration.

[env]clear
Clears the environment by removing (unsetting) all variables, except those listed
in keep statements, if such are given (see below). The clear statement is always
executed first.

[env]keep pattern
Declares variables matching pattern (a globbing pattern) as exempt from clearing.
This statement implies clear.

For example, the following configuration fragment removes from the environment all
variables except ‘HOME’, ‘USER’, ‘PATH’, and variables beginning with ‘LC_’:

env {
clear;
keep HOME;
keep USER;
keep PATH;
keep "LC_*";

}

[env]keep "name=value"
Retains the variable name, if it has the given value. Note, that the argument must
be quoted.

16 GNU Pies Manual

[env]set "name=value"
Assigns value to environment variable name. The value is subject to variable expan-
sion using the same syntax as in shell. The set and unset (see below) statements
are executed in order of their appearance. For example

env {
set "MYLIB=$HOME/lib";
set "LD_LIBRARY_PATH=$LD_LIBRARY_PATH${LD_LIBRARY_PATH:+:}$MYLIB";

}

[env]eval "value"
Perform variable expansion on value and discard the result. This is useful for side-
effects. For example, to provide default value for the LD_LIBRARY_PATH variable, one
may write:

env {
eval "${LD_LIBRARY_PATH:=/usr/local/lib}";

}

[env]unset pattern
Unset environment variables matching pattern. The following will unset the LOGIN
variable:

unset LOGIN;

The following will unset all variables starting with ‘LD_’:

unset "LD_*";

Notice, that patterns containing wildcard characters must be quoted.

3.3.4.1 env: legacy syntax.

Up to version 1.3 pies implemented the one-line variant of the env statement. The use of
this legacy syntax is discouraged. It is supported for backward compatibility only and will
be removed in future versions. This subsection describes the legacy syntax.

[legacy syntax]env args
Set program environment.

Arguments are a whitespace-delimited list of specifiers. The following specifiers are
understood:

- (a dash) Clear the environment. This is understood only when used as a first word
in args.
The modern syntax equivalent is:

env {
clear;

}

-name Unset the environment variable name. The modern syntax equivalent is
env {
unset name;

}

Chapter 3: Pies Configuration File 17

-name=val
Unset the environment variable name only if its value is val. The modern
syntax equivalent is:

env {
unset "name=val";

}

name Retain the environment variable name. The modern syntax equivalent is

env {
keep name;

}

name=value
Define environment variable name to have given value. The modern syn-
tax equivalent is:

env {
keep "name=value";

}

name+=value
Retain variable name and append value to its existing value. If no such
variable is present in the environment, it is created and value is assigned to
it. However, if value begins with a punctuation character, this character
is removed from it before the assignment. This is convenient for using
this construct with environment variables like PATH, e.g.:

PATH+=:/sbin

In this example, if PATH exists, ‘:/sbin’ will be appended to it. Otherwise,
it will be created and ‘/sbin’ will be assigned to it.

In modern syntax, use shell variable references, e.g.:

env {
set "PATH=${PATH}${PATH:+:}/sbin";

}

name=+value
Retain variable name and prepend value to its existing value. If no such
variable is present in the environment, it is created and value is assigned
to it. However, if value ends with a punctuation character, this character
is removed from it before assignment.

In modern syntax, use shell variable references, e.g. instead of doing

env PATH=+/sbin:

use

env {
set "PATH=/sbin${PATH:+:}$PATH";

}

18 GNU Pies Manual

3.3.5 Early Environment Expansion

By default any references to environment variables encountered in the command statement
are not expanded. If you need to expand them, there are two flags (see [flags], page 12) at
your disposal: ‘shell’ and ‘expandenv’.

The ‘shell’ flag instructs pies to pass the command line specified by the the command
statement as the argument to the ‘/bin/sh -c’ command (or another shell, if specified by
the ‘program’ statement). This naturally causes all references to the environment variables
to be expanded, as in shell. The overhead is that two processes are run instead of the one:
first the shell and second the command itself, being run as its child. This overhead can
be eliminated by using the exec statement before the command, to instruct the shell to
replace itself with the command without creating a new process.

Use this flag if the command you use in the component definition is a shell built-in, a
pipe or another complex shell statement.

Another way to expand environment variables in the command line is by specifying the
‘expandenv’ flag. This flag instructs pies to expand any variable references the same way
that the Bourne shell would expand them, but without actually invoking the shell.

A variable reference has the form ‘$variable’ or ‘${variable}’, where variable is the
variable name. The two forms are entirely equivalent. The form with curly braces is
normally used if the variable name is immediately followed by an alphanumeric symbol,
which will otherwise be considered part of it. This form also allows for specifying the action
to take if the variable is undefined or expands to an empty value:

${variable:-word}
Use Default Values. If variable is unset or null, the expansion of word is sub-
stituted. Otherwise, the value of variable is substituted.

${variable:=word}
Assign Default Values. If variable is unset or null, the expansion of word is
assigned to variable. The value of variable is then substituted.

${variable:?word}
Display Error if Null or Unset. If variable is null or unset, the expansion of
word (or a message to that effect if word is not present) is output to the current
logging channel. Otherwise, the value of variable is substituted.

${variable:+word}
Use Alternate Value. If variable is null or unset, nothing is substituted, other-
wise the expansion of word is substituted.

When the two flags are used together, the preference is given to ‘shell’, and a warning
message to that effect is issued.

Also, please note, that whichever option you chose the environment variables available
for expansion are those inherited by the parent shell and modified by the env statement
(see Section 3.3.4 [Environment], page 15).

3.3.6 Actions Before Startup

The statements described in this subsection specify actions to perform immediately before
starting the component:

Chapter 3: Pies Configuration File 19

[Config: component]chdir dir
Change to the directory dir.

[Config: component]remove-file file-name
Remove file-name. This is useful, for example, to remove stale UNIX sockets or pid-
files, which may otherwise prevent the component from starting normally.
As of version 1.8 only one remove-file may be given.

[Config: component]pass-fd-timeout number
Wait number of seconds for the ‘pass-fd’ socket to become available (see
Section 3.3.10 [Meta1-Style Components], page 26). Default is 5 seconds.

3.3.7 Exit Actions

The default behavior of pies when a ‘respawn’ component terminates is to restart it. Unless
the component terminates with 0 exit code, a corresponding error message is issued to the
log file. This behavior can be modified using return-code statement:

[Config: component]return-code
return-code codes {
...

}

The codes argument is a list of exit codes or signal names. Exit codes can be specified
either as decimal numbers or as symbolic code names from the table below:

Name Numeric value
EX OK 0
EX USAGE 64
EX DATAERR 65
EX NOINPUT 66
EX NOUSER 67
EX NOHOST 68
EX UNAVAILABLE 69
EX SOFTWARE 70
EX OSERR 71
EX OSFILE 72
EX CANTCREAT 73
EX IOERR 74
EX TEMPFAIL 75
EX PROTOCOL 76
EX NOPERM 77
EX CONFIG 78

Table 3.3: Standard Exit Codes
Signal numbers can be given either as ‘SIG+n’, where n is the signal number, or as

signal names from the following list: ‘SIGHUP’, ‘SIGINT’, ‘SIGQUIT’, ‘SIGILL’, ‘SIGTRAP’,
‘SIGABRT’, ‘SIGIOT’, ‘SIGBUS’, ‘SIGFPE’, ‘SIGKILL’, ‘SIGUSR1’, ‘SIGSEGV’, ‘SIGUSR2’,

20 GNU Pies Manual

‘SIGPIPE’, ‘SIGALRM’, ‘SIGTERM’, ‘SIGSTKFLT’, ‘SIGCHLD’, ‘SIGCONT’, ‘SIGSTOP’, ‘SIGTSTP’,
‘SIGTTIN’, ‘SIGTTOU’, ‘SIGURG’, ‘SIGXCPU’, ‘SIGXFSZ’, ‘SIGVTALRM’, ‘SIGPROF’, ‘SIGWINCH’,
‘SIGPOLL’, ‘SIGIO’, ‘SIGPWR’, ‘SIGSYS’.

If the component exits with an exit code listed in codes or is terminated on a signal
listed in codes, pies executes actions specified in that ‘return-code’ block. The actions
are executed in the order of their appearance below:

[Config: return-code]exec command
Execute the supplied external command. Prior to execution, all file descriptors are
closed. The command inherits the environment from the main pies process with the
following additional variables:

PIES_VERSION
The pies version number (1.8).

PIES_MASTER_PID
PID of the master pies process.

PIES_COMPONENT
Tag of the terminated component (see Section 3.3 [Component State-
ment], page 10).

PIES_PID PID of the terminated component.

PIES_SIGNAL
If the component terminated on signal, the number of that signal.

PIES_STATUS
Program exit code.

[Config: return-code]action ‘disable | restart’
If ‘restart’ is given, restart the component. This is the default. Otherwise, mark the
component as disabled. Component dependents are stopped and marked as disabled
as well. Once disabled, the components are never restarted, unless their restart is
requested by the administrator.

[Config: return-code]notify email-string
Send an email notification to addresses in email-string. See Section 3.4 [Notification],
page 30, for a detailed discussion of this feature.

[Config: return-code]message string
Supply notification message text to use by notify statement. See Section 3.4 [Noti-
fication], page 30, for a detailed discussion of this feature.

Any number of return-code statements are allowed, provided that their codes do not
intersect.

The return-code statements can also be used outside of component block. In this case,
they supply global actions, i.e. actions applicable to all components. Any return-code
statements appearing within a component block override the global ones.

Chapter 3: Pies Configuration File 21

3.3.8 Output Redirectors

Output redirectors allow to redirect the standard error and/or standard output of a com-
ponent to a file or syslog facility.

[Config: component]stderr type channel
[Config: component]stdout type channel

Redirect standard error (if stderr) or standard output (if stdout) to the given chan-
nel.
The type of redirection is specified by type argument:

file Redirect to a file. In this case channel gives the full name of the file. For
example:

stderr file /var/log/component/name.err;

syslog Redirect to syslog. The channel parameter is either the syslog facility and
priority separated by dot or the priority alone, in which case the facility
will be taken from the syslog statement (see [syslog], page 38).
Example:

stdout syslog local1.info;
stderr syslog err;

Valid facilities are: ‘user’, ‘daemon’, ‘auth’, ‘authpriv’, ‘mail’, ‘cron’,
‘local0’ through ‘local7’ (all names case-insensitive).
Valid priorities are: ‘emerg’, ‘alert’, ‘crit’, ‘err’, ‘warning’, ‘notice’,
‘info’, ‘debug’.

3.3.9 Inetd-Style Components

Inetd-style components are declared using mode inetd statement. The ‘component’ decla-
ration must contain a ‘socket’ statement:

[Config: component]socket url
Define a socket to listen on. Allowed values for url are:

inet[+proto]://ip:port
Listen on IPv41 address ip (may be given as a symbolic host name), on
port port. Optional proto defines the protocol to use. It must be a valid
protocol name as given in /etc/protocols. Default is ‘tcp’.

local[+proto]://file[;args]
file[+proto]://file[;args]
unix[+proto]://file[;args]

Listen on the UNIX socket file file, which is either an absolute or relative
file name, as described above. The proto part is as described above.
Optional arguments, args, control ownership and file mode of file. They
are a list of assignments, separated by semicolons. The following values
are allowed:

user User name of the socket owner.

1 Support for IPv6 will be added in future versions.

22 GNU Pies Manual

group Owner group of the socket, if it differs from the user group.

mode Socket file mode (octal number between ‘0’ and ‘777’).

umask Umask to use when creating the socket (octal number be-
tween ‘0’ and ‘777’).

For example:

socket
"unix:///var/run/socket;user=nobody;group=mail;mode=770";

The file part may be a relative file name, provided that the chdir
statement is used for this component (see Section 3.3.6 [Actions Before
Startup], page 18).

[Config: component]socket-type type
Sets the socket type. Allowed values for type are: ‘stream’, ‘dgram’, ‘raw’, ‘rdm’,
‘seqpacket’. Default is ‘stream’. Notice that some socket types may not be imple-
mented by all protocol families, e.g. ‘seqpacket’ is not implemented for ‘inet’.

[Config: component]max-rate n
Specifies the maximum number of times the component can be invoked in one minute;
the default is unlimited. A rate of ‘0’ stands for ‘unlimited’.

[Config: component]max-instances n
Sets the maximum number of simultaneously running instances of this component. It
is equivalent to the maximum number of simultaneously opened connections.

[Config: component]max-instances-message text
Text to send back if max-instances is reached. This is valid only for TCP sockets.

[Config: component]max-ip-connections number
Maximum number of connections that can be opened simultaneously from a single IP
address.

[Config: component]max-ip-connections-message text
Textual message to send in reply to an incoming TCP connection from the IP address
that has already reached max-ip-connections limit.

[Config: component]acl { . . . }
Set access control list for this component. This is valid only for ‘inetd’ and ‘accept’
components. See Section 3.5 [ACL], page 32, for a detailed description of access
control lists.

[Config: component]access-denied-message text
Textual message to send in reply to an incoming TCP connection that has been denied
by ACL settings.

Chapter 3: Pies Configuration File 23

3.3.9.1 Built-in Inetd Services

Built-in or internal services are such inetd-style components that are supported internally
by pies and do not require external programs. In pies version 1.8 those are:

echo Send back any received data. Defined in RFC 862 (http://tools.ietf.org/
html/rfc862).

discard Read the data and discard them. Defined in RFC 863 (http://tools.ietf.
org/html/rfc863).

time Return a machine readable date and time as seconds since the Epoch. Defined
in RFC 868 (http://tools.ietf.org/html/rfc868).

daytime Return current date and time in human-readable format. Defined in RFC 867
(http://tools.ietf.org/html/rfc867).

chargen Send a continuous stream of ASCII printable characters without regard to the
input. Defined in RFC 864 (http://tools.ietf.org/html/rfc864)

qotd Send a ‘quotation of the day’ text without regard to the input. Defined in
RFC 865 (http://tools.ietf.org/html/rfc865).

tcpmux TCP Port Service Multiplexer. Defined in RFC 1078 (http://tools.ietf.
org/html/rfc1078).

A definition of a built-in service component must have the internal flag (see [flags],
page 12) set. It may not contain command or program statements, as built-in services do
not need external programs. Instead, a service declaration must be present:

[Config: component]service name
Set the built-in service name. Its argument is one of the keywords listed in the above
table.

For example, the following component declaration defines a standard TCP-based echo
service:

component echo {
socket "inet://0.0.0.0:echo";
service echo;
flags internal;

}

It corresponds to the following inetd.conf line:
echo stream tcp nowait root internal

Another built-in services are defined in the same manner, replacing ‘echo’ in the service
field with the corresponding service name.

The ‘qotd’ service reads the contents of the qotd file and sends it back to the client.
By default the ‘qotd’ file is located in the local state directory and named instance.qotd
(where instance is the name of the pies instance; see [instances], page 65). This default
location can be changed using the following statement:

[Config]qotd-file file-name
Set the name of the ‘quotation-of-the-day’ file.

http://tools.ietf.org/html/rfc862
http://tools.ietf.org/html/rfc862
http://tools.ietf.org/html/rfc863
http://tools.ietf.org/html/rfc863
http://tools.ietf.org/html/rfc868
http://tools.ietf.org/html/rfc867
http://tools.ietf.org/html/rfc867
http://tools.ietf.org/html/rfc864
http://tools.ietf.org/html/rfc865
http://tools.ietf.org/html/rfc1078
http://tools.ietf.org/html/rfc1078

24 GNU Pies Manual

The text read from the ‘qotd’ file is preprocessed, by replacing each LF character (ASCII
10) with two characters: CR (ASCII 13) followed by LF. The resulting text is truncated to
512 characters.

The use of ‘tcpmux’ services is covered below.

3.3.9.2 TCPMUX Services

TCPMUX allows to use multiple services on a single well-known TCP port using a service
name instead of a well-known number. It is defined in RFC 1078 (http://tools.ietf.org/
html/rfc1078). The protocol operation is as follows. The master TCPMUX component
listens on a certain TCP port (usually on port 1) for incoming requests. After connecting to
the master, the client sends the name of the service it wants, followed by a carriage-return
line-feed (CRLF). Pies looks up this name in the list of services handled by the master
(subordinate services) and reports with ‘+’ or ‘-’ followed by optional text and terminated
with the CRLF, depending on whether such service name is found or not. If the reply was
‘+’, pies then starts the requested component. Otherwise, it closes the connection.

TCPMUX service names are case-insensitive. The special service ‘help’ is always defined;
it outputs a list of all the subordinate services, one name per line, and closes the connection.

The master TCPMUX service is declared as a usual built-in service, e.g.:
component tcpmux-master {

socket "inet://0.0.0.0:1";
service tcpmux;
flags internal;

}

Any number of subordinate services may be defined for each master. A subordinate
server component definition must contain at least the following statements:

[Config: component]service name
Sets the name of the subordinate service. The name will be compared with the first
input line from the client.

[Config: component]tcpmux-master name
Sets the name of the master TCPMUX service.

[Config: component]flags list
The flags statement (see [flags], page 12) must contain at least one of the following
flags:

tcpmux A “dedicated” TCPMUX subordinate service. When invoked, it must
output the ‘+ CRLF’ response itself.

tcpmuxplus
Simple service. Before starting it, pies will send the ‘+ CRLF’ reply.

[Config: component]command command-line
The command line for handling this service.

For example:
component scp-to {

http://tools.ietf.org/html/rfc1078
http://tools.ietf.org/html/rfc1078

Chapter 3: Pies Configuration File 25

service scp-to;
flags (tcpmuxplus, sockenv);
tcpmux-master tcpmux;
command "/usr/sbin/in.wydawca";

}

For TCPMUX services, access control lists are handled in the following order. First, the
global ACL is checked. If it rejects the connection, no further checks are done. Then, if the
master TCPMUX service has an ACL, that ACL is consulted. If it allows the connection,
the subordinate is looked up. If found, its ACL (if any) is consulted. Only if all three ACLs
allow the connection, is the service started.

A similar procedure applies for other resources, such as limits, umask, env, user, group,
etc.

3.3.9.3 Socket Environment Variables

If the ‘sockenv’ flag is set (see [flags], page 12), the following environment variables are set
prior to executing the command:

PROTO Protocol name.

SOCKTYPE Socket type. See [socket-type], page 22, for a list of possible values.

LOCALIP IP address of the server which is handling the connection.

LOCALPORT
Local port number.

LOCALHOST
Host name of the server. This variable is defined only if the ‘resolve’ flag is
set (see [flags], page 12).

REMOTEIP IP address of the remote party (client).

REMOTEPORT
Port number on the remote side.

REMOTEHOST
Host name of the client. This variable is defined only if the ‘resolve’ flag is
set (see [flags], page 12).

The variables whose names begin with REMOTE are defined only for TCP connections.

3.3.9.4 Exit Actions in Inetd Components

Exit actions (see Section 3.3.7 [Exit Actions], page 19) work for ‘inet-style’ components.
The only difference from ‘respawn’ components is that the ‘restart’ action is essentially
ignored, as it makes no sense to start an ‘inet-style’ component without a communication
socket.

A common use of return-code statement is to invoke an external program upon the
termination of a component. For example, the following configuration snippet configures an
FTP server and ensures that a special program is invoked after closing each FTP connection:

component ftp {
return-code EX_OK {

26 GNU Pies Manual

exec "/sbin/sweeper --log";
}
mode inetd;
socket "inet://0.0.0.0:21";
umask 027;
program /usr/sbin/in.ftpd
command "ftpd -ll -C -t180";

}

This approach may be used to process FTP uploads in real time.

3.3.10 Meta1-Style Components

Meta1-style components are declared using mode pass statement. For such components, you
must declare both a socket to listen on (see [inetd-socket], page 21, and a UNIX socket name
to pass the file descriptor to the component. The latter is defined using pass-fd-socket
statement:

[Config: component]pass-fd-socket file-name
The argument is an absolute or relative file name of the socket file. In the latter case,
the chdir dir statement must be used for this component (see Section 3.3.6 [Actions
Before Startup], page 18), and the socket will be looked under dir.
This socket file is supposed to be created by the component binary upon its startup.

3.3.11 Component Visibility ACLs

Pies control interface allows certain users to list and modify components of a running pies
instance. Two access control lists define who can list and modify the particular component.

[Config: component]list-acl name
[Config: component]list-acl { . . . }

This list controls who can get listing of this component (see [piesctl list], page 44).
In the first form, name refers to the name of an already defined global ACL (see
[defacl], page 32).
The second form defines new unnamed ACL. The syntax is described in detail in
Section 3.5 [ACL], page 32.

[Config: component]admin-acl name
[Config: component]admin-acl { . . . }

This list controls who can stop, restart or otherwise modify this component (see
Section 5.4 [components], page 44).
As above, two forms are available: the first one for using an already defined named
ACL, and the second one, for defining a new ACL in place.

3.3.12 Component Syntax Summary

This subsection summarizes the component statements. For each statement, a reference to
its detailed description is provided.

component tag {
Component execution mode.

Chapter 3: Pies Configuration File 27

See Section 3.3 [Component Statement], page 10.
mode modename;

Full name of the program.
See Section 3.3 [Component Statement], page 10.
program name;
Command line.
See Section 3.3 [Component Statement], page 10.
command string;

List of prerequisites.
See Section 3.3.1 [Prerequisites], page 13.
prerequisites (compnames);
List of components for which this one is a prerequisite.
See Section 3.3.1 [Prerequisites], page 13.
dependents (compnames);

List of flags.
See [flags], page 12.
flags (flags);

For init components: runlevels in which to start this
component.
See Section 6.1 [Runlevels], page 52.
runlevels string;

Listen on the given url.
See Section 3.3.9 [Inetd-Style Components], page 21.
socket url;

Set socket type.
See Section 3.3.9 [Inetd-Style Components], page 21.
socket-type ‘stream | dgram | raw | rdm | seqpacket’;

Service name for built-in inetd component.
See Section 3.3.9.1 [builtin], page 23.
service string;

Tag of master TCPMUX component, for subordinate components.
See Section 3.3.9.2 [TCPMUX], page 24.
tcpmux-master string;

Pass fd through this socket.
See Section 3.3.10 [Meta1-Style Components], page 26.
pass-fd-socket soket-name;
Wait number of seconds for pass-fd socket to become available.
See Section 3.3.6 [Actions Before Startup], page 18.

28 GNU Pies Manual

pass-fd-timeout number;

Maximum number of running instances.
See Section 3.3.3 [Resources], page 14.
See Section 3.3.9 [Inetd-Style Components], page 21.
max-instances number;

For ‘inetd’ components:
Text to send back if max-instances is reached.
See Section 3.3.9 [Inetd-Style Components], page 21.
max-instances-message text;

Maximum number of times an inetd component can be invoked in
one minute.
See Section 3.3.9 [Inetd-Style Components], page 21.
max-rate number;

For ‘inetd’ components:
Max. number of simultaneous connections from a single IP address.
See Section 3.3.9 [Inetd-Style Components], page 21.
max-ip-connections number;

For ‘inetd’ components:
Text to send back if max-ip-connections is reached.
See Section 3.3.9 [Inetd-Style Components], page 21.
max-ip-connections-message text;

For ‘inetd’ components:
Text to send back if access is denied by ACL.
See Section 3.3.9 [Inetd-Style Components], page 21.
access-denied-message text;

ACL for administrative (read-write) access to this component.
See Section 3.3.11 [Visibility], page 26.
admin-acl name;
or:
admin-acl { ... }

ACL for read-only access to this component.
See Section 3.3.11 [Visibility], page 26.
list-acl name;
or:
list-acl { ... }

ACL for this component.
See Section 3.5 [ACL], page 32.
acl name;

Chapter 3: Pies Configuration File 29

or:
acl { ... }

Redirect program’s standard output to the given
file or syslog priority.
See Section 3.3.8 [Output Redirectors], page 21.
stdout ‘file | syslog’ channel;
Redirect program’s standard error to the given
file or syslog priority.
See Section 3.3.8 [Output Redirectors], page 21.
stderr ‘file | syslog’ channel;

Run with this user privileges.
See Section 3.3.2 [Component Privileges], page 14.
user user-name;
Retain supplementary group.
See Section 3.3.2 [Component Privileges], page 14.
group group-name;
Retain all supplementary groups of which user is a member.
See Section 3.3.2 [Component Privileges], page 14.
allgroups bool;

Set system limits.
See Section 3.3.3 [Resources], page 14.
limits string;

Force this umask.
See Section 3.3.3 [Resources], page 14.
umask number;

Set program environment.
See Section 3.3.4 [Environment], page 15.
env { ... }

Change to this directory before executing the component.
See Section 3.3.6 [Actions Before Startup], page 18.
chdir dir;
Remove file-name before starting the component.
See Section 3.3.6 [Actions Before Startup], page 18.
remove-file file-name;

Actions:
See Section 3.3.7 [Exit Actions], page 19.
return-code exit-code-list {
Action to take when a component finishes with this return code.
action ‘disable | restart’;
Notify these addresses when then component terminates.

30 GNU Pies Manual

notify email-string;
Notification message text (with headers).
message string;
Execute this command.
exec command

}
}

3.4 Notification

Pies provides a notification mechanism, which can be used to send email messages when
components terminate. The exact contents of such notifications and the list of their recipi-
ents may depend on the exit code which the component returned. Notification is configured
by ‘notify’ and ‘message’ statements in a ‘return-code’ block.

[Config: return-code]notify email-string
Send email notification to each address from email-string. The latter is a comma-
separated list of email addresses, e.g.:

notify "root@localhost,postmaster@localhost";

[Config: return-code]message string
Supply the email message text to be sent. String must be a valid RFC 822 message,
i.e. it must begin with message headers, followed by an empty line and the actual
message body.

The message may contain variable data in the form of variable references. A variable
is an entity that holds some data describing the event that occurred. Meta-variables
are referenced using the following construct:

${name}

where name is the name of the variable. Before actually sending the message, each
occurrence of this construct is removed from the text and replaced by the actual value
of the referenced variable. For example, the variables ‘component’ and ‘retcode’
expand to the name of the exited component and its exit code, correspondingly.
Supposing that ‘component’ is ‘ftpd’ and ‘retcode’ is 76, the following fragment:

Subject: ${component} exited with code ${retcode}

will become:

Subject: ftpd exited with code 76

The table below lists all available variables and their expansions:

Chapter 3: Pies Configuration File 31

Variable Expansion
canonical_program_name ‘pies’
program_name Program name of the pies binary.
package Package name (‘GNU Pies’).
instance Instance name (see [instances], page 65).
version Package version (1.8).
component Name of the terminated component.
termination Termination cause (see below).
retcode Component exit code (or signal number, if

exited on signal), in decimal.

Table 3.4: Notification Variables
The ‘termination’ variable is set so as to facilitate its use with the ‘retcode’ vari-
able. Namely, its value is ‘exited with’, if the component exited and ‘terminated
on signal’, if it terminated on a signal. Thus, using

${termination} ${retcode}

results in a correct English sentence. This message, however, cannot be properly
internationalized. This will be fixed in the future versions.

If message statement is not given, the following default message is used instead:

From: <>
X-Agent: ${canonical_program_name} (${package} ${version})
Subject: Component ${component} ${termination} ${retcode}.

Notification messages are sent using an external program, called mailer. By default it is
/usr/sbin/sendmail. You can change it using the following configuration statement:

[Config]mailer-program prog
Use prog as a mailer program. The mailer must meet the following requirements:

1. It must read the message from its standard input.
2. It must treat the non-optional arguments in its command line as recipient ad-

dresses.

For example, the following statement instructs pies to use exim as a mailer:

mailer-program /usr/sbin/exim;

By default, the mailer program is invoked as follows:

/usr/sbin/sendmail -oi -t rcpts

where rcpts is a whitespace-separated list of addresses supplied in the ‘notify’ statement.

The mailer command may be altered using ‘mailer-command-line’ statement:

[Config]mailer-command-line string
Set mailer command line. Notice, that string must include the command name as
well. The ‘mailer-program’ statement supplies the full name of the binary which will

32 GNU Pies Manual

be executed, while the first word from the ‘mailer-command-line’ argument gives
the string it receives as ‘argv[0]’.
The example below shows how to use this statement to alter the envelope sender
address:

mailer-command-line "sendmail -f root@domain.com -oi -t";

3.5 Access Control Lists

Access control lists, or ACLs for short, are lists of permissions that control access to ‘inetd’,
‘accept’ and ‘meta1’-style components.

An ACL is defined using acl block statement:

[Config]acl
acl {
definitions

}

This statement is allowed both in global context and within a ‘component’ block. If both
are present, the global-level ACL is consulted first, and if it allows access, the component
ACL is consulted. As a result, access is granted only if both lists allow it.

A named ACL is an access control list which is assigned its own name. Named ACLs are
defined using the ‘defacl’ statement:

[Config]defacl name
defacl name {
definitions

}

The name parameter specifies a unique name for that ACL. Named ACLs are applied
only if referenced from another ACL (either global or a per-component one, or any
named ACL, referenced from these). See [acl-ref], page 32, below.

In both forms, the part between the curly braces (denoted by definitions), is a list of
access control statements. There are two types of such statements:

[Config: acl]allow [user-group] sub-acl host-list
[Config: acl]allow any

Allow access to the component.

[Config: acl]deny [user-group] sub-acl host-list
[Config: acl]deny any

Deny access to the component.

All parts of an access statement are optional, but at least one of them must be present.
The user-group part is reserved for future use and is described in more detail in Appendix B
[User-Group ACLs], page 77.

The sub-acl part, if present, allows to branch to another ACL. The syntax of this part
is:

acl name

Chapter 3: Pies Configuration File 33

where name is the name of an ACL defined previously in ‘defacl’ statement.
The host-list group allows to match client addresses. It consists of the from keyword

followed by a list of address specifiers. Allowed address specifiers are:

addr Matches if the client IP equals addr. The latter may be given either as an IP
address or as a host name, in which case it will be resolved and the first of its
IP addresses will be used.

addr/netlen
Matches if first netlen bits from the client IP address equal to addr. The network
mask length, netlen, must be an integer number in the range from 0 to 32. The
address part, addr, is as described above.

addr/netmask
The specifier matches if the result of logical AND between the client IP address
and netmask equals to addr. The network mask must be specified in “dotted
quad” form, e.g. ‘255.255.255.224’.

filename Matches if connection was received from a UNIX socket filename, which must
be given as an absolute file name.

The special form ‘allow any’ means to allow access unconditionally. Similarly, ‘deny
any’, denies access unconditionally. Normally, one of these forms appears as the last state-
ment in an ACL definition.

To summarize, the syntax of an access statement is:
allow|deny [acl name] [from addr-list]

where square brackets denote optional parts.
When an ACL is checked, its entries are tried in turn until one of them matches, or the

end of the list is reached. If a matched entry is found, its command verb, allow or deny,
defines the result of the ACL check. If the end of the list is reached, the result is ‘allow’,
unless explicitly specified otherwise (using the [acl-any], page 33.)

For example, the following ACL allows access for anybody coming from networks
‘192.168.10.0/24’ and ‘192.168.100.0/24’, or any connection that matches the named
ACL ‘my-nets’ (which is defined elsewhere in the configuration file). Access is denied for
anybody else:

acl {
allow from (192.168.10.0/24, 192.168.100.0/24);
allow acl "my-nets";
deny all;

}

3.6 The Control Statement

The control interface provides a method for communication with the running pies instance.
It is used by the piesctl utility to query information about the instance and components
it is currently running and to send it commands for controlling its operation (see Chapter 5
[piesctl], page 43). By default the UNIX socket /tmp/pies.ctl is used for this purpose. If
pies was started with the --instance=name option, the socket is named /tmp/name.ctl.

34 GNU Pies Manual

Whatever its name, the socket will be owned by the user pies runs as (see Section 3.11 [Pies
Privileges], page 39) and will have access rights of 0500, allowing only that user to read and
write to it. When pies is used as init process, the default socket name is /dev/init.ctl.

[Config]control
The ‘control’ statement configures the control interface and limits access to it:

control {
socket url;
acl { ... }
admin-acl { ... }
user-acl { ... }
realm name;

}

[Config: control]socket url
URL of the control socket. The url argument is a string of the following syntax:

inet://ip:port
Listen on IPv4 address ip (may be given as a symbolic host name), on
port port.

local://file[;args]
file://file[;args]
unix://file[;args]

Listen on the UNIX socket file file, which is either an absolute or relative
file name. Optional arguments args control ownership and file mode of
file. They are a semicolon-separated list of assignments to the following
variables:

user User name of the socket owner.

group Owner group of the socket, if it differs from the user group.

mode Socket file mode (octal number between ‘0’ and ‘777’).

umask Umask to use when creating the socket (octal number be-
tween ‘0’ and ‘777’).

[Config: control]idle-timeout n
Disconnect any control session that remains inactive for n seconds. This statement is
reserved for use in the future. Currently (as of version 1.8) it is a no-op.

The control interface is protected by three access control lists (See Section 3.5 [ACL],
page 32, for a discussion of their syntax).

[Config: control]acl name
[Config: control]acl { . . . }

Controls who can connect to the interface. The first form refers to a named ACL that
must have been defined earlier by defacl statement (see [defacl], page 32). Use the
second form to define a new ACL in place.

Chapter 3: Pies Configuration File 35

[Config: control]user-acl name
[Config: control]user-acl { . . . }

Control interface provides two kinds of operations: read-only (such as getting informa-
tion about running components) and write operations (such as stopping or restarting
components).
The user-acl controls read access. Access to particular components can also be con-
trolled individually, using the per-component list-acl statement (see Section 3.3.11
[Visibility], page 26).

[Config: control]admin-acl name
[Config: control]admin-acl { . . . }

Controls write access to the pies instance itself and to the components for which no
specific admin-acl statements are supplied (see Section 3.3.11 [Visibility], page 26).
In particular, whoever passes admin-acl can issue commands for stopping the in-
stance and reloading its configuration.

When checking whether the user has a particular kind of access to a component, first
the corresponding ACL from the control section is checked. If it allows access, then the
per-component ACL is tried. If it allows access too, then the operation is permitted.

[Config: control]realm name
Defines the realm for basic authentication. Default value is ‘pies’.

3.7 User Identities for Accessing Control Interface

Privileges for using and performing various commands over the control interface can be
distributed among several users. For example, it is possible to grant some users the rights
to only view the component listing, or even to further limit their rights to only see the
components they are authorized to know about. Another user may be able to stop or
restart components and so on. This privilege separation requires pies to have a notion of
user and be able to authenticate it.

Identity provider is an abstract mechanism that pies uses to obtain information about
the user trying to authenticate himself for accessing a particular control function. As of
version 1.8, this mechanism is considered experimental. That means, that although being
fully functional, it can change considerably in future releases.

Identity provider supports two operations: authenticating a user, and checking if he is
a member of particular group. It is defined in the configuration file using the identity
provider statement.

[Config]identity-provider name
Defines an identity provider. It is a block statement:

identity-provider name {
type type;
...

}

The provider name is used in diagnostic messages.

36 GNU Pies Manual

The only required substatement is type, which defines the type of the provider. Rest
of statements (represented by . . . above) depends on the type.

Pies version 1.8 supports identity providers of two types: ‘system’ and ‘pam’.
The ‘system’ identity provider uses system user database for authentication and system

group database for checking group membership. It is declared using the following statement:
identity-provider name {

type system;
}

Obviously, to use the system identity provider for authentication, pies must be run as
root.

The ‘pam’ identity provider uses the Pluggable Authentication Modules (PAM) for au-
thentication, and system group database for checking group membership.

identity-provider name {
type pam;
service srv;

}

The ‘service’ statement defines the name of PAM service to use for authentication. If
absent, the name ‘pies’ is used.

Any number of different identity providers can be declared in the configuration file.
When authenticating the user, they will be tried in turn until the one is found where
authentication succeeds. Subsequent group membership checks will then use this identity
provider.

3.8 Using inetd Configuration Files

In addition to its native configuration file format, GNU pies is able to read configuration
files of several other widely-used utilities. One of these is inetd. The simplest way to use
such configuration files is by including them to your main pies.conf using the include-inetd
statement:

[Config]include-inetd file
Read components from inetd-style configuration file file. The argument may also be
a directory, in which case all regular files from that directory are read and parsed as
inetd-style configuration files.
The components read from file are appended to the pies list of components in order
of their appearance.
For example, the following statement reads components from the standard inetd
configuration file:

include-inetd /etc/inetd.conf;

Any number of include-inetd may be specified. For example, the following
reads the contents of the /etc/inetd.conf configuration file and all files from the
/etc/inetd.d directory:

include-inetd /etc/inetd.conf;
include-inetd /etc/inetd.d;

Chapter 3: Pies Configuration File 37

Another way to read inetd configuration files is to supply them in the command line,
like this:

pies --syntax=inetd --config-file /etc/inetd.conf

Notice the --syntax option (see [config syntax], page 5). It informs pies that the
following files are in inetd format. Of course, several configuration file may be given:

pies --syntax=inetd \
--config-file /etc/inetd.conf --config-file /etc/inetd.d

A special option is provided that instructs pies to behave as inetd:

--inetd Read configuration from sysconfdir/inetd.conf and make sure pies state
files (see Section 3.12 [State Files], page 40) do not conflict with those from
other pies instances.

The GNU Pies package also provides a wrapper that allows to use pies instead of inetd.
It is built if the package is configured with the --enable-inetd option. The wrapper is
then installed in sbindir as inetd, possibly replacing the system binary of that name.

The command line usage of the inetd wrapper is entirely compatible with that of the
usual inetd utility, i.e.:

inetd [option] [config [config...]] [-- pies-options]

Options are:

-d Increase debug level.

-R rate Set maximum rate (see [max-rate], page 22).

For convenience, the following additional options are understood:

-t
--lint Parse configuration file or files and exit. See [lint], page 5.

-s
--status Display info about the running instance. See [pies-status], page 65.

-S
--stop Stop the running instance.

Finally, any additional options pies understands may be given to inetd after the ‘--’
separator.

3.9 Using MeTA1 Configuration File

MeTA1 is a mail transfer agent of new generation, designed to replace Sendmail in the
future (http://www.meta1.org). It has a modular structure, each module being a com-
ponent responsible for a particular task. The components are configured in the MeTA1
configuration file /etc/meta1/meta1.conf.

Pies can take a list of components directly from MeTA1 configuration file:

[Config]include-meta1 file
Parse file as MeTA1 configuration file and incorporate components defined there into
the current component list.
For example:
include-meta1 /etc/meta1/meta1.conf;

http://www.meta1.org

38 GNU Pies Manual

Thus, you can use pies instead of the default MeTA1 program manager mcp. This is
particularly useful if you use ‘Mailfromd’ (http://mailfromd.software.gnu.org.ua) to
control the mail flow.

To ensure compatibility with MeTA1, the components read from its configuration file
are started in the reverse order (i.e. from last to first), and stopped in the order of their
appearance in file.

The following pies statements are silently applied to all MeTA1 components:
allgroups yes;
stderr file compname.log
chdir queue-dir

Here, compname stands for the name of the component, and queue-dir stands for the
name of MeTA1 queue directory. The latter is /var/spool/meta1 by default. It can be
changed using the following statement:

[Config]meta1-queue-dir dir
Set name of MeTA1 queue directory.

To override any default settings for a MeTA1 component, add a command section with
the desired settings after including meta1.conf. For example, here is how to redirect the
standard error of the ‘smtps’ component to ‘local1.debug’ syslog channel:

include-meta1 /etc/meta1/meta1.conf

component smtps {
stderr syslog local1.debug;

}

3.10 Global Configuration

The statements described in this section affect pies behavior as a whole.

[Config]env { . . . }
Modifies the environment for the running pies instance. The modified environment
will be inherited by all processes started by pies in the course of its normal operation.
See Section 3.3.4 [Environment], page 15, for a detailed discussion of the env statement
syntax.

[Config]syslog { . . . }
This block statement configures logging via syslog. It has the following substatements:

[Config: syslog]dev address
Address of the socket the syslog daemon is listening on. By default, /dev/log is used.
The address argument is either the file name of the UNIX socket file or IPv4 address
of the syslog collector optionally followed by the colon and port number (or symbolic
service name). If the port number is not supplied, the ‘syslog’ port (UDP) from
/etc/services is used.

[Config: syslog]facility string
Set syslog facility to use. Allowed values are: ‘user’, ‘daemon’, ‘auth’, ‘authpriv’,
‘mail’, ‘cron’, ‘local0’ through ‘local7’ (case-insensitive).

http://mailfromd.software.gnu.org.ua

Chapter 3: Pies Configuration File 39

[Config: syslog]tag string
Prefix syslog messages with this string. By default, the program name is used.

[Config]umask number
Set the default umask. The number must be an octal value not greater than ‘777’.
The default umask is inherited at startup.

[Config]limits arg
Set global system limits for all pies components. See Section 3.3.3 [Resources],
page 14, for a detailed description of arg.

[Config]return-code { . . . }
Configure global exit actions. See Section 3.3.7 [Exit Actions], page 19, for a detailed
description of this statement.

[Config]shutdown-timeout number;
Wait number of seconds for all components to shut down. Default is 5 seconds.
The normal shutdown sequence looks as follows:
1. Compute shutdown sequence that takes into account dependencies between com-

ponents, so as to ensure that dependent components stop before their prerequi-
sites. This sequence can be viewed using the --list-shutdown-sequence option.

2. For each stage in the shutdown sequence, send the termination signal to each
component marked for that stage. By default, SIGTERM is used, but it can be
changed for each component using the sigterm configuration statement (see
[sigterm], page 13). Wait for the signalled components to terminate. If any of
them remain running after shutdown-timeout seconds, send them the SIGKILL
signal.

3. If any shutdown components are defined, start them and wait for their termi-
nation. If any components are left running after shutdown-timeout seconds,
terminate them by sending the SIGKILL signal.

3.11 Pies Privileges

Normally, pies is run with root privileges. If, however, you found such an implementation
for it, that requires another privileges, you may change them using the following three
statements:

[Config]user user-name
Start pies with the UID and GID of this user.

[Config]group group-list
Retain the supplementary groups, specified in group-list.

[Config]allgroups bool
Retain all supplementary groups the user (as given with user statement) is a member
of.

An example of such implementation is using pies to start jabberd components: http://
www.gnu.org.ua/software/pies/example.php?what=jabberd2.

http://www.gnu.org.ua/software/pies/example.php?what=jabberd2
http://www.gnu.org.ua/software/pies/example.php?what=jabberd2

40 GNU Pies Manual

3.12 State Files

Pies uses several files to keep its state information. The directory which hosts these files
is called state directory, it is usually /var/pies or /usr/local/var/pies). The state
directory can be configured at run time:

[Config]state-directory dir
Set the program state directory.

The table below describes the files kept in the state directory. The instance in this table
stands for the pies instance name (see [instances], page 65). Usually, it is ‘pies’.

instance.pid
The PID file. It keeps the PID number of the running pies instance.

instance.qotd
The Quotation-of-the-day file. It is used by the ‘qotd’ built-in service (see
[qotd], page 23).

The following statements allow to redefine state file names. Use them only if the defaults
do not suit your needs, and neither the state-directory statement nor the --instance
option can help:

[Config]pidfile file
Sets the PID file name.

[Config]qotd-file file-name
Sets the name of the ‘quotation-of-the-day’ file.

The following statements are retained for compatibility with earlier pies versions. They
are silently ignored:

[Config]control-file arg

[Config]stat-file arg

41

4 Pies Debugging

The amount of debugging information produced by pies is configured by the following
statements:

[Config]debug level
Set debugging level. The level must be a non-negative decimal integer. In version 1.8
the following debugging levels are used:

1 Log all basic actions: starting and stopping of components, received in-
coming TCP connections, sending mails. Notify about setting limits. Log
pre-startup actions (see Section 3.3.6 [Actions Before Startup], page 18).

2 Log setting particular limits. Log the recomputed alarms.

4 Dump execution environments

6 Debug the parser of MeTA1 configuration grammar.

7 Debug the lexical analyzer of MeTA1 configuration file.

[Config]source-info bool
This statement decides whether debugging messages should contain source informa-
tion. To enable source information, use:

source-info yes;

This feature is designed for pies developers.

43

5 Communicating with Running pies Instances

The piesctl tool allows you to communicate with the running pies program. The invo-
cation syntax is:

piesctl [options] command [args...]

The command determines the operation to perform. The following sections describe
available commands in detail.

5.1 piesctl id – Return Info About the Running Instance

The id subcommand returns information about the pies instance organized as key-value
pairs. When invoked without arguments, the following data are returned:

package Canonical package name.

version Version of pies.

instance Instance name (see [instances], page 65).

binary Full pathname of the pies executable file.

argv Command line arguments supplied upon its startup.

PID Process ID.

For example:
$ piesctl id
package: GNU Pies
version: 1.8
instance: pies
binary: /usr/sbin/pies
argv: /usr/sbin/pies --config-file=/etc/pies/pies.conf
PID: 15679

To request a subset of these data, give the items of interest as command line arguments:
$ piesctl id binary PID
binary: /usr/sbin/pies
PID: 15679

5.2 Instance Management

Two subcommands are provided for stopping and restarting pies.

[piesctl]shutdown
Stop the running pies instance

[piesctl]reboot
Restart pies instance. Upon receiving this command, pies will restart itself with the
same command line arguments. Naturally, this means that all running components
will be restarted as well.

These subcommands do nothing when init process is selected.

44 GNU Pies Manual

5.3 piesctl config – Configuration Management

[piesctl]config file list
List currently loaded configuration files.

[piesctl]config file clear
Clear configuration file list

[piesctl]config file add syntax file
Add file to the list of configuration files. syntax specifies its syntax: ‘pies’, ‘inetd’,
‘meta1’, or ‘inittab’.

[piesctl]config file del[ete] name [name...]
Remove listed names from the list of configuration files.

[piesctl]config reload
Reload configuration.

5.4 Component Management

[piesctl]list [condition]
List configured components. When used without arguments, all components are
listed. Otherwise, only processes matching condition are listed.

Each output line contains at least two columns. The first column lists the tag of
the component. The second one contains flags, describing the type and status of the
component. The first flag describes the type:

Flag Meaning
3 SysV init ‘ctrlaltdel’ component
A Accept-style component
B SysV init ‘boot’ component
C Respawn component
c SysV init ‘once’ component
D SysV init ‘ondemand’ component
E Command being executed
F SysV init ‘powerfail’ component
f SysV init ‘powerwait’ component
I Inetd-style component
i SysV init ‘sysinit’ component
k SysV init ‘kbrequest’ component
n SysV init ‘powerfailnow’ component
o SysV init ‘powerokwait’ component
P Pass-style component
R Output redirector
W SysV init ‘wait’ component
w SysV init ‘bootwait’ component

The second flag is meaningful only for components. Its values are:

Chapter 5: Communicating with Running pies Instances 45

Flag Meaning
- Disabled component
f A finished ‘once’ component
L Inetd listener
R Running component
S Component is stopping
s Component is sleeping
T Component is stopped

The next column lists the PID (for running components) or socket address (for Inter-
net listeners), or the string ‘N/A’ if neither of the above applies.

If the component is sleeping, the time of its scheduled wake-up is listed in the next
column.

Rest of line shows the component command line.

$ piesctl list
smtps/stderr R 4697
pmult/stderr R 4677
pmult/stdout R 4676
pmult CR 4678 /usr/local/sbin/pmult
smar CR 4680 smar -f /etc/meta1/meta1.conf -d 100
qmgr CR 4691 qmgr -f /etc/meta1/meta1.conf
smtpc CR 4696 smtpc -f /etc/meta1/meta1.conf
smtps PR 4698 smtps -d100 -f /etc/meta1/meta1.conf
finger IL inet+tcp://0.0.0.0:finger /usr/sbin/in.fingerd -u
eklogin IL inet+tcp://0.0.0.0:eklogin /usr/sbin/klogind -k -c -e
kshell IL inet+tcp://0.0.0.0:kshell /usr/sbin/kshd -k -c
eklogin IR 13836 /usr/local/sbin/klogind -k -c -e

Use condition to select the components to list. In its simplest form, condition is one of
the following terms:

all Selects all processes, including internal services, such as output redirectors.

active Selects only active components.

component tag

Selects the component with the given tag. See Section 3.3 [Component State-
ment], page 10.

type arg Selects processes of the given type. Argument is ‘component’, to select only
components, ‘command’, to select commands or ‘redirector’ to select output
redirectors. When piesctl list is used without arguments, type component
is assumed.

mode arg Selects components of the given mode (see Section 3.3 [Component Statement],
page 10). E.g. to list ‘inetd’ components:

piesctl list mode inetd

46 GNU Pies Manual

status arg

Selects processes with the given status. Argument is one of:

finished Component is finished.

listener Component is an inet listener.

running Component is running.

sleeping Component is sleeping.

stopped Component is stopped.

stopping Component has been sent the SIGTERM signal and pies is waiting
for it to terminate.

A term may be preceded by the word ‘not’ to indicate negation of the condition. For
example, the following command will list inactive components:

piesctl list not active

Furthermore, terms can be combined in logical expressions using boolean ‘and’ and ‘or’
operators:

piesctl list type component and not mode inetd

Conjunction (‘and’) has higher precedence than disjunction (‘or’). In complex expres-
sions parentheses can be used to alter the precedence:

piesctl list type component \
and \(status running or status sleeping \)

Notice that parentheses must be escaped to prevent them from being interpreted by the
shell.

The following summarizes the syntax of condition in BNF:
<condition> ::= <disjunction>
<disjunction> ::= <conjunction> | <conjunction> "or" <disjunction>
<conjunction> ::= <unary> | <unary> "and" <conjunction>
<unary> ::= <term> | "not" <condition> | "(" <condition> ")"
<term> ::= "all" | "active" | <keyword> <value>
<keyword> ::= "type" | "mode" | "status" | "component"
<value> ::= <word> | <quoted-string>
<word> ::= <printable> | <word> <printable>
<printable> ::= "A" - "Z" | "a" - "z" | "0" - "9" |

"_" | "." | "*" | ":" | "@" | "[" | "]" | "-" | "/"
<quoted-string> ::= """ <string> """
<string> ::= <char> | <string> <char>
<char> ::= <any character except "\" and """> | "\\" | "\""

[piesctl]stop condition
Stop components matching condition.

[piesctl]start condition
Start components matching condition.

[piesctl]restart condition
Restart components.

Chapter 5: Communicating with Running pies Instances 47

5.5 Init Process Management

The piesctl telinit command communicates with pies instance running as init process
(PID 1). See Section 6.5 [piesctl telinit], page 55, for a detailed discussion.

5.6 Piesctl Command Line Options

-c file

--config-file=file
Read configuration from file instead of the default /etc/piesctl.conf. See
Section 5.7 [piesctl.conf], page 48, for its description.

-d
--dump Dump obtained responses verbatim. This is useful mainly for debugging pur-

poses.

-i inst

--instance=inst
Talk to pies instance inst.

--no-netc
-N Don’t read ~/.netrc file.

-u url

--url=url
Specifies the URL of the communication socket. See [piesctl url], page 48, for
a description of allowed URL forms.

-v
--verbose

Enable verbose diagnostics.

Before parsing, configuration file is preprocessed using external command defined at
build time (normally m4). The following options control this feature:

-E Show preprocessed configuration on stdout and exit.

--no-preprocessor
Disable the use of the external preprocessor.

--preprocessor=cmd
Use the command cmd as the external preprocessor, instead of the default m4.

--define=sym[=value]
-D symbol[=value]

Define symbol sym as having value, or empty, if the value is not given.

--include-directory=dir
-I dir Add directory dir to the list of directories to be scanned for preprocessor include

files.

--undefine=sym
-U sym Undefine symbol sym.

48 GNU Pies Manual

Finally, the following options can be used to obtain on-line assistance:

--config-help
Show a terse reference to configuration file syntax and exit.

-h
--help Display command line help summary.

--usage Give a short usage message

-V
--version

Show program version.

5.7 Configuration for piesctl

The configuration file /etc/piesctl.conf helps the piesctl tool to determine the URL
of the control socket. This file is not mandatory, and its absence is not considered an error.
Its syntax is similar to that of /etc/pies.conf. The following statements are defined:

[piesctl.conf]socket url
Sets the default socket URL.

[piesctl.conf]source ip
Sets the default source IP address. This is used if the control socket is of ‘inet’ type.

[piesctl.conf]instance name
Configures socket URL and (optionally) source address to use when communicating
with the pies instance name (i.e., when invoked as piesctl -i name:

instance name {
Socket URL for that instance.
socket url;
Source IP address.
source ip;

}

Valid values for url in the above statements are:

inet://ip:port
Use the IPv4 address ip (may be given as a symbolic host name), on port port.

local://file
file://file
unix://file Use the UNIX socket file file.

The following algorithm is used to determine the name of the communication socket:
1. If the --url (-u) option is given, use its argument.
2. Determine the instance name (inst). If the --instance (-i) is given, inst is its argu-

ment. Otherwise, assume inst=‘pies’.
3. If configuration file /etc/piesctl.conf exists, read it. On success:

a. See if the instance inst statement is present and has socket substatement. If
so, the argument to socket gives the socket URL.

Chapter 5: Communicating with Running pies Instances 49

b. Otherwise, if global socket statement is present, its argument gives the URL.
4. Otherwise, suppose that piesctl is run on the same box where the target instance

of pies is running, and see if the file /etc/inst.conf exists. If so, parse it as pies
configuration file and look for control block statement. If it has socket statement,
take its argument as the URL. See Section 3.6 [control], page 33.

5. If socket URL is not determined by these steps, assume /tmp/inst.ctl.

51

6 Init – parent of all processes

Pies can be executed directly by the kernel as a program responsible for starting all other
processes (a process with PID 1). In this case it becomes also the parent of all processes
whose natural parents have died and is responsible for reaping those when they die.

When invoked this way, pies reads its configuration from two files: /etc/inittab and
/etc/pies.init. The former has traditional syntax (see [inittab], page 52) and is retained
for compatibility with another ‘init’ daemons, and the latter is in native pies format (see
Section 3.1 [Syntax], page 6). Either of the files or even both of them can be missing.

The startup process passes through several states. Transition between states is controlled
by runlevel, which also defines the set of components that must be executed. Startup states
are:

sysinit System initialization state. This state marks the beginning of the startup pro-
cess. Only root partition is mounted, and is usually read-only. Pies uses console
to output diagnostic messages.

Normally, the configuration instructs pies to execute at this point the system
initialization script, which checks and mounts the necessary local file systems,
initializes devices and loads kernel modules.

The system then passes to ‘boot’ state, unless the default runlevel is ‘S’, in
which case the ‘single’ state is selected.

boot Upon entering the ‘boot’ state, pies attempts to log the ‘reboot’ login record
into the system utmp/wtmp files and executes entries marked with boot and
bootwait types. It then enters the ‘normal’ state.

single This is a fallback state for single-user system. It is entered only if the ‘S’ runlevel
has been selected initially. Normally, this state is used for system maintenance.
The configuration usually provides a component which executes a single-user
shell when entering this state. If it does not, pies executes ‘/sbin/sulogin’.

normal Upon entering this state, pies assumes that components executed previously
have brought the system to such condition where normal communication means
can already be used. This means that the file systems have been mounted
read-write and the syslog daemon is operating. Therefore pies opens its
communication channels and redirects its diagnostic output to syslog facility
‘daemon’.

Then it starts components scheduled for the default runlevel and begins its
normal operation.

Pies communication channels are:

/dev/initctl
A FIFO file for communication using legacy protocol (using telinit).

/dev/init.ctl
UNIX socket for communication using piesctl.

52 GNU Pies Manual

6.1 Runlevels

Runlevel determines the set of components to be run in normal state. It is a decimal digit
from ‘0’ to ‘9’ or letter ‘S’. Traditionally, runlevels are assigned as follows:

0 System halt.

1
S Single user mode.

3 Multiuser mode.

4 Multiuser with X11.

Additionally, three special runlevels ‘a’, ‘b’ and ‘c’ can be used to start on-demand
components without actually changing the runlevel. Once started, on-demand components
persist through eventual runlevel changes.

6.2 Init Process Configuration

The two configuration files are read in this order: /etc/inittab first, then
/etc/pies.init. The /etc/inittab file is a simple line-oriented file. Empty lines and
lines beginning with ‘#’ are ignored (except if ‘#’ is followed by the word ‘pies’, see below).
Non-empty lines consist of 4 fields separated by colons:

id:runlevels:mode:command

where

id Component identifier. A string uniquely identifying this component.

runlevels List of the runlevels for which the component should be run. Runlevels are listed
as a contiguous string of characters, without any whitespace or delimiters.

mode Component execution mode.

command Command to be executed and its arguments.

Component execution modes are:

respawn The basic execution mode. A respawn component is restarted each time it
terminates. If it is restarted more than 10 times in 2 minutes, pies puts it in
sleeping state for the next 5 minutes.

off Disabled component. The entry is ignored.

boot The process will be executed during system boot. The ‘runlevel’ settings are
ignored.

bootwait The process will be executed during system boot. No other components will be
started until it has terminated. The ‘runlevel’ settings are ignored.

sysinit The process will be executed during system boot, before any boot or bootwait
entries. The ‘runlevel’ settings are ignored.

once The process will be executed once when the specified runlevel is entered.

wait The process will be started once when the specified runlevel is entered. Pies
will wait for its termination before starting any other processes.

Chapter 6: Init – parent of all processes 53

ctrlaltdel
The process will be executed when pies receives the SIGINT signal. Normally
this means that the CTRL-ALT-DEL combination has been pressed on the
keyboard.

kbrequest
The process will be executed when a signal from the keyboard handler is re-
ceived that indicates that a special key combination was pressed on the console
keyboard.

ondemand The process will be executed when the specified ondemand runlevel is called
(‘a’, ‘b’ and ‘c’). No real runlevel change will occur (see [Ondemand runlevels],
page 52). The process will remain running across any eventual runlevel changes
and will be restarted whenever it terminates, similarly to respawn components.

powerfail
The process will be executed when the power goes down. Pies will not wait
for the process to finish.

powerfailnow
The process will be executed when the power is failing and the battery of the
external UPS is almost empty.

powerokwait
The process will be executed as soon as pies is informed that the power has
been restored.

powerwait
The process will be executed when the power goes down. Pies will wait for the
process to finish before continuing.

The special mode ‘initdefault’ declares the default runlevel. In the ‘initdefault’
entry, the runlevels field must consist of exactly one runlevel character. Rest of fields are
ignored. For example, the following instructs pies that the default runlevel is ‘3’:

id:3:initdefault:

If no ‘initdefault’ entry is present, pies will ask the user to input the desired default
runlevel upon entering the normal state.

Inittab must contain at least one entry with ‘S’ in runlevels field. This entry is used
for system maintenance and recovery. If it is absent, pies adds the following default entry
implicitly:

~~:S:wait:/sbin/sulogin

As an exception to traditional syntax, the ‘#’ followed by the word ‘pies’ (with any
amount of white space in between) introduce a pragmatic comment that modifies the be-
havior of the configuration parser. The following such comments are understood:

#pies pragma debug n

Set debugging level n (a decimal number). See Chapter 4 [Pies Debugging],
page 41.

54 GNU Pies Manual

#pies pragma next syntax file

After parsing /etc/inittab, read configuration from file file, assuming syntax
(see [config syntax], page 5). Multiple ‘next’ pragmas are allowed, the named
files will be processed in turn.
The default set up is equivalent to specifying

#pies pragma next pies /etc/pies.init

#pies pragma stop
Stop parsing after this line. The remaining material is ignored.

Both the traditional /etc/inittab and pies-native /etc/pies.init files are entirely
equivalent, excepting that, naturally, the latter is more flexible and gives much more possi-
bilities in defining the system behavior. The declaration of a component in /etc/pies.init
can contain all the statements discussed in Section 3.3 [Component Statement], page 10.
The only difference is that runlevels to start the component is must be specified:

[Config: component]runlevels string
Specifies the runlevel to start the component in. The string argument is a string of
runlevel characters.

For example, the inittab entry discussed above is equivalent to the following statement
in pies.init file:

component id {
mode mode;
runlevels runlevels;
command command;

}

The default runlevel is specified in /etc/pies.init using the following construct:

[Config]initdefault rl
Declare the default runlevel. The argument is the runlevel name. E.g.

initdefault 3;

If both /etc/inittab and /etc/pies.init are present, the latter can declare compo-
nents with the same id as the ones declared in the former. In that case, the two entries
will be merged, the latter one overriding the former. Thus, /etc/pies.init can be used
to complement definitions in inittab. Consider, for example the following inittab entry:

upd:3:respawn:/usr/libexec/upload

If pies.init contains the following:
component upd {

user nobody;
stderr syslog local1;

}

the result will be equivalent to:
component upd {

mode respawn;
runlevels 3;

Chapter 6: Init – parent of all processes 55

command /usr/libexec/upload;
user nobody;
stderr syslog local1;

}

6.3 Init Command Line

The runlevel to run in can be given as argument in the command line:
/sbin/pies 1

Apart from this, the following command line arguments are recognized:

-s
single Initialize default runlevel ‘S’.

-b
emergency

Run emergency shell /sbin/sulogin, prior to initialization.

6.4 Init Environment

Programs run from pies init process inherit a basic environment consisting of the following
variables:

PREVLEVEL=L
Previous runlevel, or letter ‘N’ if the runlevel hasn’t been changed since startup.

RUNLEVEL=L
Current runlevel.

CONSOLE=device
Pathname of the console device file.

INIT_VERSION="GNU Pies 1.8"
Version of pies.

PATH=/bin:/usr/bin:/sbin:/usr/sbin

Once the system is booted up, the environment can be controlled using the piesctl
telinit environ (or pies -T -e) command.

6.5 piesctl telinit

[piesctl]piesctl telinit runlevel
Report the runlevel and state of the process 1.

[piesctl]piesctl telinit runlevel n
Switch to runlevel n.

[piesctl]piesctl telinit environ list [NAME]
List the environment. If NAME is given, list only the value of that variable.

[piesctl]piesctl telinit environ set NAME=VALUE
Set variable NAME to VALUE. The environment is capable to hold at most 32
variables.

56 GNU Pies Manual

[piesctl]piesctl telinit environ unset NAME
Unset variable NAME.

6.6 The Telinit Command

When given the -T (--telinit) option, pies emulates the behavior of the traditional
telinit command. This is a legacy way of communicating with the init process. The
commands are sent via named pipe /dev/initctl. When the -T option is given, the rest
of command line after it is handled as telinit options. The following command:

pies -T [-t n] r

tells init process to switch to runlevel r. Possible values for r are:

0 to 9 Instructs init to switch to the specified runlevel.

S or s Tells init to switch to the single user mode.

a, b, or c Tells init to enable on-demand components with the specified runlevel. The
actual runlevel is not changed.

Q or q Tells init to rescan configuration files.

The -t (--timeout) option sets the time to wait for processes to terminate after sending
them the SIGTERM signal. Any processes that remain running after n seconds will be sent
the SIGKILL signal. The default value is 5 seconds.

This usage is equivalent to the piesctl telinit runlevel command (see Section 6.5
[piesctl telinit], page 55).

The -e (--environment) option modifies the init process environment. Its argument is
either a variable assignment ‘name=value’ to set a variable, or the name of a variable to
unset it. Several -e options can be given to process multiple variables in a single command.
Note, however, that given n -e options, the total length of their arguments is limited to 367
- n bytes.

This option provides a limited subset of the functionality offered by the piesctl telinit
environ command.

The table below summarizes all options available in telinit mode:

-t n Wait n seconds for processes to terminate after sending them the SIGTERM
signal. Any processes that remain running after that time will be sent the
SIGKILL signal. The default value is 5 seconds.

-e var=value
Define environment variable var as having value value.

-e var Unset environment variable var.

57

7 Using Pies as Entrypoint for Docker Container

Another use for pies is as an entrypoint in a docker container. This is similar to the init
mode described in the previous chapter in that pies runs with PID 1. However, in this
case pies uses its regular configuration file.

When started with PID 1 from a docker container, pies tries to detect the fact auto-
matically and switch to the entrypoint mode. As of version 1.8, this detection might fail
in containers run under Kubernetes. For such cases, use the --no-init option to inform
pies that it should run in entrypoint mode.

The following Dockerfile fragment illustrates how to configure pies to be run from a
container:

COPY pies.conf /etc
ENTRYPOINT ["/usr/sbin/pies", "--foreground", "--stderr"]

It is supposed, of course, that the configuration file pies.conf is available in the same
directory as Dockerfile.

It is a common practice to supply configuration settings via the environment variables.
To implement it in pies.conf, use either expandenv or shell flag (see Section 3.3.5 [Early
Environment Expansion], page 18). For example:

flags expandenv;
command "syslogd -n -R $LOGHOST";

This will expand the environment variable LOGHOST and pass its value as one of the
arguments to syslog. The usual shell syntax is supported. For example, to provide a
default value for the -R option above (in case LOGHOST is empty or undefined), use:

flags expandenv;
command "syslogd -n -R ${LOGHOST:-172.19.255.255}";

Quite often a need arises to expand environment variables in other parts of the config-
uration file and to conditionally exclude portions of configuration, depending on whether
a particular variable is set. The following sections describe two approaches to solving this
problem.

7.1 Expanding Environment Variables in GNU m4

Configuration preprocessing (see Section 3.2 [Preprocessor], page 8) can be used to con-
ditionally enable parts of the pies.conf file, depending on the value of an environment
variable. The technique described below assumes that you use GNU m4 as preprocessor.

Define the following two M4 macros:

[M4 macro]CF_WITH_ENVAR name text
Expands the environment variable name within text. The macro does so by tem-
porarily redefining the symbol name to the value of the environment variable name
and expanding text.
The definition of the macro is:

m4_define(‘CF_WITH_ENVAR’,m4_dnl
‘m4_pushdef(‘$1’,m4_esyscmd(printf "$‘$1’"))m4_dnl
$2‘’m4_dnl

58 GNU Pies Manual

m4_popdef(‘$1’)m4_dnl
’)

This macro allows you to use environment expansion where it is not normally sup-
ported. Consider, for example, this fragment:

component {
CF_WITH_ENVAR(‘WORKDIR’, ‘chdir "WORKDIR";’)
...

}

If you set WORKDIR=/var/wd prior to invoking pies, it will actually expand to
component {
chdir "/var/wd";
...

}

See Section 3.3.6 [Actions Before Startup], page 18, for details about the chdir state-
ment.

[M4 macro]CF_IF_ENVAR name if-set if-unset
If the environment variable name is defined and has a non-empty value, expand if-set,
otherwise expand if-unset. Expand each occurrence of name in if-set to the actual
value of the environment variable.
Following is the definition of this macro:

m4_define(‘CF_IF_ENVAR’,m4_dnl
‘CF_WITH_ENVAR(‘$1’,‘m4_ifelse($1,‘’,$3,$2)’)’)

This macro makes it possible to conditionally enable configuration file fragments
depending on whether some environment variable is defined. E.g.:

CF_IF_ENVAR(‘LOGHOST’,‘
component logger {
command "syslogd -n -R LOGHOST;

}
’)

Place both macros in a single file and include it at the top of your pies.conf using the
m4_include command (see Section 3.2.1 [m4], page 10).

7.2 Using xenv

Another way to expand environment variables in the configuration file is to use xenv. xenv
is a specialized preprocessor that expands environment variables in its input. It is also able
to conditionally include parts of text depending on whether the environment variable is
defined. The program is described in https://www.gnu.org.ua/software/xenv/.

To use xenv as preprocessor, start pies as follows:
pies --foreground --stderr --preprocessor="xenv -s"

The -s option instructs xenv to emit synchronization lines, that inform pies about
actual location of configuration statements in case when the expansion adds or removes
portions of text spanning several lines.

https://www.gnu.org.ua/software/xenv/

Chapter 7: Using Pies as Entrypoint for Docker Container 59

You can also combine the functionality of m4 and xenv by running

pies --foreground --stderr --preprocessor="xenv -s -m"

In this case xenv will automatically feed its output to the standard input of m4, started
for this purpose.

By default, xenv uses the shell syntax to expand the variables. For example, in the
following configuration file fragment, ‘$WORKDIR’ will expand to the actual value of the
WORKDIR environment variable:

component {
chdir "$WORKDIR";
...

}

There are two ways to conditionally include portions of text. The first one is to use the
‘${X:+W}’ construct. For example:

component {
${WORKDIR:+chdir "$WORKDIR";}
...

}

Another way is to use the xenv ‘$$ifset’ (or ‘$$ifdef’) statement:

component {
$$ifset WORKDIR
chdir "$WORKDIR";

$$endif
...

}

The difference between ‘$$ifset X’ and ‘$$ifdef X’ is the same as between ‘${X:+W}’
and ‘${X+W}’, i.e. ‘$$ifset’ tests whether the variable is set and not-null, and ‘$$ifdef’
tests only whether it is set, no matter its value.

xenv extends the shell syntax by providing a ternary operator. The construct ‘${X|A|B}’
expands to ‘A’ if the variable X is set and to ‘B’ otherwise (as usual, placing the colon
before first ‘|’ checks if the variable is set and not null). This allows for writing compact
conditionals:

component syslogd {
mode respawn;
command "/sbin/syslogd -n ${LOGHOST:|-R $LOGHOST|-O /proc/1/fd/1}";

}

In this example syslogd is instructed to relay messages to the IP address specified by
the LOGHOST variable and to send messages to the container stdout otherwise.

Using shell indirection operator ‘$’ can be confusing in parts of pies configuration file
that deal with environment variables by themselves. The common point of confusion is
using env and command statements when shell or expandenv flag is set. For example:

60 GNU Pies Manual

component X {
env {

set "HOME=/var/lib/nobody";
}
flags shell;
command "marb -C $HOME";

}

Here, the intent is to pass ‘/var/lib/nobody’ as the command line argument to marb.
However, if pies was started with xenv as preprocessor, the reference ‘$HOME’ will be ex-
panded by xenv at the early stage to whatever value the HOME variable had at pies startup.
Consequently, when it comes to launching the ‘X’ component, the intended expansion won’t
take place.

There are three options to handle such cases:

1. Escape the ‘$’

Use backslash to suppress expansion by xenv:

component X {
env {

set "HOME=/var/lib/nobody";
}
flags shell;
command "marb -C \$HOME";

}

2. Use the verbatim operator

This allows to reproduce the desired part of text verbatim. There are two verbatim
operators: inline operator ‘$[...]’ and block operator ‘$$verbatim ... $$end’. Ex-
amples:

component X {
env {

set "HOME=/var/lib/nobody";
}
flags shell;
$[command "marb -C $HOME";]

}

or

component X {
env {

set "HOME=/var/lib/nobody";
}
flags shell;

$$verbatim
command "marb -C $HOME";

$$end
}

Chapter 7: Using Pies as Entrypoint for Docker Container 61

3. Change the indirection operator
The indirection operator ‘$’ can be changed either globally, by using the -S option, or
locally by using the ‘$$sigil’ statement. E.g.:

$$sigil @
From this point on, $ looses its special meaning in xenv.

component X {
env {

set "HOME=/var/lib/nobody";
}
flags shell;
command "marb -C $HOME @FILE";

}

In the command line of this example, @FILE will be expanded by xenv when pro-
cessing the configuration file, and $HOME will be expanded by shell (to the value
‘/var/lib/nobody’, set by the env statement) when pies will start the command.

63

8 Configuration Examples

In this section we provide several examples of working pies configuration files.

8.1 Simplest Case: Using Pies to Run Pmult

The example below runs pmult (see Section “pmult” in Mailfromd Manual) utility with the
privileges of ‘meta1’ user. Both standard error and standard output are redirected to the
syslog facility ‘mail’, priorities ‘err’ and ‘info’, correspondingly.

component pmult {
command "/usr/local/sbin/pmult";
user meta1s;
stderr syslog mail.err;
stdout syslog mail.info;

}

8.2 Using Pies to Run Pmult and MeTA1

The example below is a working configuration file for running pmult and all components
of MeTA1, configured in /etc/meta1/meta1.conf. The global return-code statement is
used to configure pies behavior for some exit codes.

Sample pies configuration for running pmult and MeTA1

Special handling for exit codes that mean the program was
incorrectly used or misconfigured.
return-code (EX_USAGE, EX_CONFIG) {
action disable;
notify "root";
message <<- EOT
From: Pies <>
X-Agent: ${canonical_program_name} (${package} ${version})
Subject: Component ${component} disabled.

Component "${component}" has terminated with code ${retcode},
which means it encountered some configuration problem.
I will not restart it automatically. Please fix its configuration
and restart it manually at your earliest convenience.

To restart, run ‘‘${program_name} -R ${component}’’

Wuff-wuff,
Pies

EOT;
}

component pmult {
command "/usr/local/sbin/pmult";

64 GNU Pies Manual

user meta1s;
stderr syslog err;
stdout syslog info;

}

include-meta1 "/etc/meta1/meta1.conf";

8.3 Running Pies as Inetd

This configuration file allows to run pies instead of initd. It starts two services: ‘ftp’ and
‘pop3d’, and restricts access to them to two local subnets:

acl {
allow from 10.10.10.0/24;
allow from 192.168.10.0/27;
deny from any;

}

debug 3;

component ftp {
mode inetd;
socket "inet://0.0.0.0:21";
umask 027;
program /usr/sbin/ftpd
command "ftpd -l -C";

}

component pop3d {
mode inetd;
socket "inet://0.0.0.0:110";
program "/usr/sbin/pop3d";
command "pop3d --inetd";

}

The following is almost equivalent configuration in inetd format:
ftp stream tcp nowait root /usr/sbin/ftpd ftpd -l -C
pop3 stream tcp nowait root /usr/sbin/pop3d pop3d --inetd

This configuration is “almost” equivalent, because the inetd format has no way of
specifying ACLs and setting the umask.

65

9 Command Line Usage

When run without arguments, pies parses and loads the configuration file, detaches itself
from the controlling terminal (becomes a daemon), and starts all components. Before
actually starting up, it ensures that no another copy is already running, by looking for a
PID file and verifying that the PID listed there is alive and responding. If another copy is
running, pies refuses to start up.

It is often necessary to run several copies of pies with different configuration files.
To support such usage, pies provides a notion of instance. Pies instance is an indepen-
dent invocation of pies that uses a separate configuration file and separate state files (see
Section 3.12 [State Files], page 40). Instances are created using the --instance option:

--instance=name
Read configuration from sysconfdir/name.conf, use name as the base name
for state files (i.e., they become name.pid, name.clt, etc.) and tag all syslog
messages with name.

For example, the following invocations create three instances of pies:
pies
pies --instance=inetd
pies --instance=mta

The first instance uses the default configuration and state files. The second one reads
configuration from /etc/inetd.conf, and the third one reads it from /etc/mta.conf.

After startup, you can verify the status of the running process using the --status option.
$ pies --status
smtps/stderr R 4697
pmult/stderr R 4677
pmult/stdout R 4676
pmult CR 4678 /usr/local/sbin/pmult
smar CR 4680 smar -f /etc/meta1/meta1.conf -d 100
qmgr CR 4691 qmgr -f /etc/meta1/meta1.conf
smtpc CR 4696 smtpc -f /etc/meta1/meta1.conf
smtps PR 4698 smtps -d100 -f /etc/meta1/meta1.conf
finger IL inet+tcp://0.0.0.0:finger /usr/sbin/in.fingerd -u
eklogin IL inet+tcp://0.0.0.0:eklogin /usr/sbin/klogind -k -c -e
kshell IL inet+tcp://0.0.0.0:kshell /usr/sbin/kshd -k -c
eklogin IR 13836 /usr/local/sbin/klogind -k -c -e

See [piesctl list], page 44, for a description of the output format.
You can restart any component by using the --restart-component (-R) option, e.g.:

$ pies -R pmult smtps

To stop all running components and shut down pies, use the --stop (-S) command line
option:

$ pies --stop

If you modified the configuration file, you can instruct pies to read it again using the
--reload (-r) command line option.

66 GNU Pies Manual

The --status, --restart-component, --stop, and --reload options actually run the
piesctl command, which provides a powerful tool for managing pies. See Chapter 5
[piesctl], page 43, for a detailed description.

Two options are provided for verifying inter-component dependencies. The --dump-
depmap option prints on the standard output the dependency map. This map is a square
matrix with rows representing dependents and columns representing prerequisites. An ‘X’
sign is placed on each crossing which corresponds to the actual dependency. For example:

$ pies --dump-depmap
Dependency map:

0 1 2 3 4
0
1
2 X
3 X
4 X X

Legend:
0: pmult
1: smar
2: qmgr
3: smtpc
4: smtps

This example corresponds to the configuration file shown in Section 8.2 [Hairy Pies],
page 63. To illustrate how to read it, consider the 4th row of the table. According to the
legend, number 4 means ‘smtps’ component. There are two ‘X’ marks: in columns 1 and 2.
This means that ‘smtps’ depends on ‘smar’ and ‘qmgr’.

You can also list prerequisites explicitly:
$ pies --trace-prereq
qmgr: smar
smtpc: qmgr
smtps: smar qmgr

To list prerequisites for a particular component, give its name in the command line:
$ pies --trace-prereq smtps
smtps: smar qmgr

Any number of components can be given in the command line.
A counterpart option --trace-depend lists dependencies. Its usage is similar to the

described above:
$ pies --trace-depend
smtps
smtpc
qmgr: smtps, smtpc
smar: smtps, qmgr

$ pies --trace-depend qmgr
qmgr: smtps, smtpc

67

10 Pies Invocation

This section summarizes pies command line options.

--config-file=file
-c file Read configuration from file, instead of the default /etc/pies.conf.

See Chapter 3 [Configuration], page 5.

--config-help
Show configuration file summary. See Chapter 3 [Configuration], page 5.

--define=sym[=value]
-D symbol[=value]

Define symbol sym as having value, or empty, if the value is not given. See
Section 3.2 [Preprocessor], page 8.

--debug=level
-x level Set debug verbosity level. See Chapter 4 [Pies Debugging], page 41, for a

description of level.

--dump-depmap
Dump dependency map. See [dump-depmap], page 66.

-E Preprocess configuration file and exit. See Section 3.2 [Preprocessor], page 8.

--force Force startup even if another instance may be running.

--foreground
Remain in foreground.

--help Display a short usage summary and exit.

--inetd
-i Run in inetd-compatibility mode. It is roughly equivalent to pies

--instance=inetd --syntax=inetd. See Section 3.8 [inetd], page 36.

--include-directory=dir
-I dir Add directory dir to the list of directories to be scanned for preprocessor include

files.

--instance=name
Define the name of the pies instance. See [instances], page 65.

--lint
-t

--no-init
Don’t assume init mode (see Chapter 6 [Init Process], page 51) if running with
PID 1. See Chapter 7 [Docker Entrypoint], page 57.

--list-shutdown-sequence
List components in order of shutdown sequence. Each line lists the sequence
stage number and the component name. See [shutdown sequence], page 39, for
a detailed discussion of its meaning.

68 GNU Pies Manual

--no-preprocessor
Disable the use of the external preprocessor.
See Section 3.2 [Preprocessor], page 8.

--preprocessor=cmd
Use the command cmd as the external preprocessor, instead of the default m4.
See Section 3.2 [Preprocessor], page 8.

--source-info
Show source info with debugging messages. See [source-info], page 41.

--status
-s Start piesctl list to obtain information about the running processes. See

[piesctl list], page 44.

--stderr Log to standard error.

--stop
-S Stop the running instance. This is equivalent to running piesctl shutdown.

--syntax=type
Define the syntax for parsing the configuration files specified by any --config-
file options that follow this one. Possible values for type are:

pies Native pies configuration. See Chapter 3 [Configuration], page 5.

inetd ‘Inetd’-style configuration files. See [inetd.conf], page 71.

meta1 ‘meta1’-style configuration files. See Section 3.9 [include-meta1],
page 37.

inittab ‘Inittab’ file. See Chapter 6 [Init Process], page 51.

See [config syntax], page 5, for a detailed description of this option.

--syslog Log to syslog. This is the default.

--telinit
-T Emulate the telinit legacy interface. The rest of command line following

this option is processed as telinit options. See Section 6.6 [telinit command],
page 56, for a detailed description of these.

--trace-depend
List dependencies for components named in the command line. Without argu-
ments, dependencies for each component are listed. See [trace-depend], page 66.

--trace-prereq
List prerequisites for components named in the command line. Without argu-
ments, prerequisites for each component are listed. See [trace-prereq], page 66.

--rate=r Set maximum connection rate (connections per second) for inetd-style compo-
nents. See [inetd component rate], page 22.

-r
--reload
--hup Reread the configuration files. This is equivalent to running piesctl config

reload (see [config reload], page 44).

Chapter 10: Pies Invocation 69

-R
--restart-component

Restart components named in the command line. See [pies-restart], page 65.

--version
Display program version and license information and exit.

--undefine=sym
-U sym Undefine symbol sym. See Section 3.2 [Preprocessor], page 8.

--usage Display a short summary of available options and exit.

71

11 How to Report a Bug

Send bug-reports and suggestions to bug-pies@gnu.org.ua.
If you think you’ve found a bug, please be sure to include maximum information needed

to reliably reproduce it, or at least to analyze it. The information needed is:
• Version of the package you are using.
• Compilation options used when configuring the package.
• Run-time configuration (pies.conf file and the command line options used).
• Detailed description of the bug.
• Conditions under which the bug appears.

mailto:bug-pies@gnu.org.ua

73

Appendix A Inetd.conf Format

This appendix describes the format of inetd compatible configuration files. See Section 3.8
[inetd], page 36, for the discussion on how to use such files with GNU pies.

The inetd configuration file has line oriented format. Comments are denoted by a ‘#’
at the beginning of a line. Empty lines and comments are ignored. Each non-empty line
must be either a service definition, or address specification.

Service definition consists of at least 6 fields separated by any amount of the white
space. These fields are described in the following table (optional parts are enclosed in
square brackets):

[service-node:]service-name
The service-name entry is the name of a valid service in the file /etc/services.
For built-in services (see Section 3.3.9.1 [builtin], page 23), the service
name must be the official name of the service (that is, the first entry in
/etc/services), or a numeric representation thereof. For TCPMUX services,
the value of the ‘service name’ field consists of the string ‘tcpmux’ followed by
a slash and the locally-chosen service name (see Section 3.3.9.2 [TCPMUX],
page 24). Optionally, a plus sign may be inserted after the slash, indicating
that pies must issue a ‘+’ response before starting this server.� �
The ‘service-name’ part corresponds to component tag in pies.conf (see
Section 3.3 [Component Statement], page 10). For built-in components, it cor-
responds to the service statement (see Section 3.3.9.1 [builtin], page 23).
 	
Optional ‘service-node’ prefix is allowed for internet services. When
present, it supplies the local addresses inetd should listen on for that service.
‘Service-node’ consists of a comma-separated list of addresses. Both symbolic
host names and numeric IP addresses are allowed. Symbolic hostnames are
looked up in DNS service. If a hostname has multiple address mappings, a
socket is created to listen on each address. A special hostname ‘*’ stands for
INADDR_ANY.

socket type
The socket type should be one of ‘stream’, ‘dgram’, ‘raw’, ‘rdm’, or ‘seqpacket’.
TCPMUX services must use ‘stream’.� �
This field corresponds to the socket-type statement in pies.conf. See [socket-
type], page 22.
 	

protocol The protocol must be a valid protocol as given in /etc/protocols. Examples
might be ‘tcp’ or ‘udp’. TCPMUX services must use ‘tcp’.

74 GNU Pies Manual

� �
The ‘service-node’ prefix and ‘socket-type’ field correspond to the socket
statement in pies.conf. See [inetd-socket], page 21.
For example, the following line:

10.0.0.1:ftp dgram udp wait root ftpd

is equivalent to
socket inet+udp://10.0.0.1:ftp;

socket-typle dgram;
 	
wait/nowait[.max-rate]

The ‘wait/nowait’ entry specifies whether the invoked component will take
over the socket associated with the service access point, and thus whether pies
should wait for the server to exit before listening for new service requests.
Datagram servers must use ‘wait’, as they are always invoked with the original
datagram socket bound to the specified service address. These servers must
read at least one datagram from the socket before exiting. If a datagram server
connects to its peer, freeing the socket so that pies can go on receiving further
messages from the socket, it is said to be a multi-threaded server; it should
read one datagram from the socket and create a new socket connected to the
peer. It should fork, and the parent should then exit to allow pies to check
for new service requests to spawn new servers. Datagram servers which process
all incoming datagrams on a socket and eventually time out are said to be
single-threaded. Examples of such servers are comsat and talkd. tftpd is an
example of a multi-threaded datagram server.
Servers using stream sockets generally are multi-threaded and use the ‘nowait’
entry. Connection requests for these services are accepted by pies, and the
server is given only the newly-accepted socket connected to a client of the
service. Most stream-based services and all TCPMUX services operate in this
manner. For such services, the invocation rate may be limited by specifying
optional ‘max-rate’ suffix (a decimal number), e.g.: ‘nowait.15’.
Stream-based servers that use ‘wait’ are started with the listening service
socket, and must accept at least one connection request before exiting. Such a
server would normally accept and process incoming connection requests until a
timeout. Datagram services must use ‘nowait’. The only stream server marked
as ‘wait’ is identd (see Section “identd” in identd manual).� �
The ‘wait’ field corresponds to flags wait in the pies.conf file. The ‘nowait’
corresponds to flags nowait. See [flags], page 12.
The ‘max-rate’ suffix corresponds to the max-rate statement. See [max-rate],
page 22.
 	

user The user entry contains the name of the user as whom the component should
run. This allows for components to be given less permission than root.� �
This corresponds to the user statement in pies.conf. See Section 3.3.2 [Com-
ponent Privileges], page 14.
 	

Appendix A: Inetd.conf Format 75

program The program entry contains the full file name of the program which is to be
executed by pies when a request arrives on its socket. For built-in services,
this entry should be ‘internal’.
It is common usage to specify /usr/sbin/tcpd in this field.� �
This field corresponds to the program statement in pies.conf. See Section 3.3
[Component Statement], page 10.
 	

server program arguments
The server program arguments should be just as arguments normally are, start-
ing with argv[0], which is the name of the program. For built-in services, this
entry must contain the word ‘internal’, or be empty.� �
This corresponds to the command statement. See Section 3.3 [Component State-
ment], page 10.
 	

Address specification is a special statement that declares the ‘service-node’ part (see
above) for all the services declared below it. It consists of a host address specifier followed
by a colon on a single line, e.g.:

127.0.0.1,192.168.0.5:

The address specifier from such a line is remembered and used for all further lines lacking
an explicit host specifier. It remains in effect until another address specification or end of
the configuration is encountered, whichever occurs first.

The following address specification:
*:

causes any previous default address specifier to be forgotten.
An example of inetd.conf file with various services follows:

ftp stream tcp nowait root /usr/libexec/ftpd ftpd -l

ntalk dgram udp wait root /usr/libexec/ntalkd ntalkd

tcpmux stream tcp nowait root internal

tcpmux/+scp-to stream tcp nowait guest /usr/sbin/in.wydawca wydawca

tcpmux/docref stream tcp nowait guest /usr/bin/docref docref

77

Appendix B User-Group ACLs

This appendix describes the ‘user-group’ extension for GNU Pies ACLs. This extension
is reserved for the future use.

The user-group ACL statement specifies which users match this entry. Allowed values
are the following:

all All users.

authenticated
Only authenticated users.

group group-list

Authenticated users which are members of at least one of groups listed in group-
list.

For example, the following statement defines an ACL which allows access for any
user connected via local UNIX socket /tmp/pies.sock or coming from a local network
‘192.168.10.0/24’. Any authenticated users are allowed, provided that they are allowed
by another ACL ‘my-nets’ (which should have been defined before this definition). Users
coming from the network ‘10.10.0.0/24’ are allowed if they authenticate themselves and
are members of groups ‘pies’ or ‘users’. Access is denied for anybody else:

acl {

allow all from ("/tmp/pies.sock", "192.168.10.0/24");

allow authenticated acl "my-nets";

allow group ("pies", "users") from "10.10.0.0/24";

deny all;

}

79

Appendix C Control API

This appendix describes control API used to communicate with the running pies daemon
via the control interface (see Section 3.6 [control], page 33). This API is used by piesctl
(see Chapter 5 [piesctl], page 43).

The API is designed as a REST service and uses HTTP. Queries are sent to pies end-
points, each of which serves a distinct purpose. Data are serialized using the JSON format.

The sections below describe in detail each endpoint and associated with it request types.

C.1 /instance

This endpoint controls the state of the running pies instance and accepts the following
HTTP requests: GET, DELETE, POST (or PUT).

[Request]GET /instance
Retrieves information about the current instance. The response body is a JSON
object with the following attributes:

‘PID’ PID of the running daemon.

‘argv’ Array of the command line arguments. ‘argv[0]’ is the program name.

‘binary’ Name of the pies binary.

‘instance’
The instance name. See [instances], page 65.

‘package’ Package name (the string ‘GNU Pies’).

‘version’ Package version

Any of these can be used in the URI to request the information about that particular
attribute, e.g.:

GET /instance/argv ⇒ {"argv":["pies", "-x2"]}

[Request]DELETE /instance/PID
Stops the current pies instance.

[Request]PUT /instance/PID
[Request]POST /instance/PID

Restarts the current pies instance.

C.2 /conf

The ‘/conf’ endpoint allows the client to inspect and change the configuration of the running
pies instance.

C.2.1 /conf/files

[Request]GET /conf/files
Return list of configuration files. On success, a JSON array is returned. Each array
element is an object with two attributes:

80 GNU Pies Manual

[Attr]string file
Pathname of the configuration file.

[Attr]string syntax
Configuration file syntax (see Section 3.1 [Syntax], page 6).

For example:
GET /conf/files ⇒
[{"file":"/etc/pies.conf", "syntax":"pies"},
{"file":"/etc/inetd.conf", "syntax":"inetd"}]

[Request]POST /conf/files
Adds a new configuration file. The body must be a JSON object with ‘file’ and
‘syntax’ attributes, as described above. The ‘file’ value must contain a pathname
of a configuration file written in a syntax supplied by the ‘syntax’ attribute (see
Section 3.1 [Syntax], page 6).
This request returns 201 code on success. To actually parse and load the added
configuration file, send a ‘PUT’ request to ‘/conf/runtime’ (see Section C.2.2
[/conf/runtime], page 80).

[Request]DELETE /conf/files/true
Clears all previously configured configuration files. Responds with:

{ "message":"file list cleared", "status":"OK" }

[Request]DELETE /conf/files/[list]
Removes files named in the list from the list of configuration files.
The ‘DELETE’ response is 200 on success. To actually update the configuration of
the running process, send a ‘PUT’ request to ‘/conf/runtime’ (see Section C.2.2
[/conf/runtime], page 80).

C.2.2 /conf/runime

This is a write-only URI. The only request supported is ‘PUT /conf/runtime’. It initiates
reloading of the pies configuration. Usually, this request is sent after one or more ‘POST’
and/or ‘DELETE’ requests to ‘/conf/files’, in order to finalize the changes applied to the
configuration.

C.3 /programs

A request sent to this URI selects one or more components and applies operation defined
by the request type to all of them.

Components are selected using a query in the form of JSON object (a selector). Valid
selectors are:

‘null’
‘false’ Matches nothing.

‘true’ Matches all components.

‘{ "op": "component", "arg": tag }’
Matches component with the given tag (see [tag], page 10).

Appendix C: Control API 81

‘{ "op": "type", "arg": "component" }’
Matches all components.

‘{ "op": "type", "arg": "command" }’
Matches all commands.

‘{ "op": "mode", "arg": mode }’
Matches all components with the given mode. See [component mode], page 11.

‘{ "op": "active" }’
Matches all active components.

‘{ "op": "status", "arg": status }’
Matches all components with the given status (one of ‘stopped’, ‘running’,
‘listener’, ‘sleeping’, ‘stopping’, ‘finished’). See [component status],
page 82, for a discussion of these values.

‘{ "op: "not", "arg": condition }’
Negates condition, which is any valid selector.

‘{ "op": "and", "arg": array }’
Returns the result of logical conjunction on the array of selectors.

‘{ "op": "or", "arg": array }’
Returns the result of logical disjunction on the array of selectors.

For example, the following selector matches all components that are in ‘running’ state,
excepting components of ‘inetd’ mode:

{ "op": "and",
"arg": [{ "op": "type", "arg": "component" },

{ "op": "not", "arg": { "op": "mode", "arg": "inetd" }
]

}

The following requests are supported:

[Request]GET /programs?selector
[Request]GET /programs/tag

This request returns information about components matched by selector (see below
for the ‘/programs/tag variant’. The response is a JSON array of descriptions. If
no component matches the selector, empty array is returned. Each description is a
JSON object with the following attributes:

[Attr]string type
Type of the described entity: ‘component’ for an instance of a configured compo-
nent, and ‘command’ for a command run as a part of exit action (see Section 3.3.7
[Exit Actions], page 19), including mailer invocations (see Section 3.4 [Notifi-
cation], page 30).

[Attr]string mode
Mode of the entity. See [component mode], page 11.

82 GNU Pies Manual

[Attr]string status
Entity status. Possible values are:

finished A ‘once’ or ‘startup’ component has finished.

listener Component is an inetd listener.

running Component is running.

sleeping Component has been put to sleep because of excessive number of
failures (see [respawn], page 1).

stopped Component is stopped.

stopping Component is being stopped (a SIGTERM was sent).

[Attr]boolean active
Whether this component is active. By default, all components are active, unless
marked with a ‘disable’ flag (see [flags], page 12) or administratively stopped.

[Attr]integer PID
PID of the running process.

[Attr]string URL
(for ‘inetd’ components) URL of the socket the component is listening on.

[Attr]string service
(for ‘tcpmux’ components) TCPMUX service name. See Section 3.3.9.2 [TCP-
MUX], page 24.

[Attr]string master
(for ‘tcpmux’ components) Tag of master TCPMUX component. See
Section 3.3.9.2 [TCPMUX], page 24.

[Attr]string runlevels
For inittab components, the string of runlevels this component is configured to
run in. See Chapter 6 [Init Process], page 51.

[Attr]integer wakeup-time
If component is in the ‘sleeping’ state, this attribute gives the number of
seconds after which an attempt will be made to restart it.

[Attr]array argv
Component command line split into words.

[Attr]string command
Component command.

[Request]DELETE /programs?selector
[Request]DELETE /programs/tag

Stop components matched by the selector. On success returns:
{ "status":"OK" }

On failure, returns
{ "status":"ER", "message": text }

where text is a textual human-readable description of the failure.

Appendix C: Control API 83

[Request]PUT /programs?selector
[Request]PUT /programs/tag

Start components matched by selector.

[Request]POST /programs
Restart components. The selector is supplied in the request content.

Wherever a selector is passed via query parameters, a simplified form with component
tag passed as query path is also allowed. For example:

GET /programs/tag

is a shortcut for:
{ "op":"and",

"arg":[{"op":"type", "arg":"component"},
{"op":"component", "arg":tag }] }

C.4 /alive

This entry point accepts only ‘GET’ requests. The URI must not be empty and must not
include sub-directories (parts separated with slashes). It is treated as the name of the
component to return the status of. E.g. querying ‘/alive/foo’ returns the status of the
component named ‘foo’. The status is returned as HTTP status code:

200 The component is up and running. For regular components that means that the
corresponding program is running. For ‘inetd’ components that means that
the listener is listening on the configured socket.

403 No component specified.

404 There is no such component.

503 The component is not running. This means that it has failed, or has been
stopped administratively or (for ‘once’ and ‘startup’ components) that it has
run once and finished.
If the component has failed, the ‘Retry-After:’ HTTP header contains the
number of seconds after which pies will retry starting this component.

C.5 /runlevel

This URI is active when pies runs as init process (see Chapter 6 [Init Process], page 51).
It supports two requests:

[Request]GET /runlevel
Returns the current state of the program as a JSON object with the following at-
tributes:

[Attr]string runlevel
Current runlevel. See Section 6.1 [Runlevels], page 52.

[Attr]string prevlevel
Previous runlevel (‘N’ if none).

84 GNU Pies Manual

[Attr]string bootstate
Boot state. See [startup states], page 51.

[Attr]string initdefault
Default runlevel.

[Request]PUT /runlevel/{"runlevel":L}
Initiates transition from the current runlevel to runlevel L (see Section 6.1 [Runlevels],
page 52).

C.6 /environ

This URI is active when pies runs as init process (see Chapter 6 [Init Process], page 51).
It manipulates the program initial environment, i.e. the environment that all programs
inherit. See Section 6.4 [Init Environment], page 55.

[Request]GET /environ/
Returns entire environment formatted as a JSON array of strings. On success, the
200 response is returned:

["RUNLEVEL=3", "CONSOLE=/dev/tty", ...]

[Request]GET /environ/var
Returns the value of the environment variable var, if such is defined. On success, the
200 response carries the object:

{ "status":"OK", "value":string }

If the variable var is not defined, a 404 response is returned. On error, a 403 response
is returned. In both cases, the response body is the usual pies diagnostics object:

{ "status":"ER", "message":text }

[Request]DELETE /environ/var
Deletes from the environment the variable var. On success, responds with HTTP 200:

{ "status":"OK" }

Error responses are the same as for ‘GET’.

[Request]PUT /environ/name=value
Initializes environment variable name to value. See ‘GET’ for the possible responses.

85

Appendix D GNU Free Documentation License

Version 1.3, 3 November 2008
Copyright c© 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE
The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.
This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.
We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.
A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.
A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.
The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released

http://fsf.org/

86 GNU Pies Manual

under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ascii without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the machine-generated HTML,
PostScript or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

The “publisher” means any person or entity that distributes copies of the Document
to the public.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

2. VERBATIM COPYING

Appendix D: GNU Free Documentation License 87

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.
You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY
If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.
If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.
If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.
It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS
You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:
A. Use in the Title Page (and on the covers, if any) a title distinct from that of the

Document, and from those of previous versions (which should, if there were any,

88 GNU Pies Manual

be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications adjacent to the other

copyright notices.
F. Include, immediately after the copyright notices, a license notice giving the public

permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.
I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item

stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their

Appendix D: GNU Free Documentation License 89

titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

90 GNU Pies Manual

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called
an “aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense, or
distribute it is void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means prior to 60 days
after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if
the copyright holder notifies you of the violation by some reasonable means, this is the
first time you have received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have
been terminated and not permanently reinstated, receipt of a copy of some or all of the
same material does not give you any rights to use it.

Appendix D: GNU Free Documentation License 91

10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.
Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation. If the Document specifies that a proxy can decide which future
versions of this License can be used, that proxy’s public statement of acceptance of a
version permanently authorizes you to choose that version for the Document.

11. RELICENSING
“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide
Web server that publishes copyrightable works and also provides prominent facilities
for anybody to edit those works. A public wiki that anybody can edit is an example of
such a server. A “Massive Multiauthor Collaboration” (or “MMC”) contained in the
site means any set of copyrightable works thus published on the MMC site.
“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license pub-
lished by Creative Commons Corporation, a not-for-profit corporation with a principal
place of business in San Francisco, California, as well as future copyleft versions of that
license published by that same organization.
“Incorporate” means to publish or republish a Document, in whole or in part, as part
of another Document.
An MMC is “eligible for relicensing” if it is licensed under this License, and if all works
that were first published under this License somewhere other than this MMC, and
subsequently incorporated in whole or in part into the MMC, (1) had no cover texts
or invariant sections, and (2) were thus incorporated prior to November 1, 2008.
The operator of an MMC Site may republish an MMC contained in the site under
CC-BY-SA on the same site at any time before August 1, 2009, provided the MMC is
eligible for relicensing.

http://www.gnu.org/copyleft/

92 GNU Pies Manual

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.3

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover

Texts. A copy of the license is included in the section entitled ‘‘GNU

Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with. . .Texts.” line with this:

with the Invariant Sections being list their titles, with

the Front-Cover Texts being list, and with the Back-Cover Texts

being list.

If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

93

Concept Index

This is a general index of all issues discussed in this manual

#

#abend . 9
#error . 9
#include . 8
#include_once . 8
#line . 9
#warning . 9

–
--no-init . 57
-D . 9
-E, introduced . 5
-U . 9

/

/etc/inetd.conf . 36
/etc/meta1/meta1.conf . 37
/etc/protocols . 21, 73
/etc/services . 73

A
accept . 11
accept-style components . 1
access control lists . 32
ACL . 32
ACL in TCPMUX services . 25
all . 77
authenticated . 77

B
block statement . 8
boolean value . 6
builtin services . 23

C
chargen . 23
Comments in a configuration file 6
component . 1, 10
component tag . 10

config-file, --config-file

option, introduced . 5

config-file, --config-file

option, summary . 67

config-help, --config-help

option, introduced . 5

config-help, --config-help

option, summary . 67
configuration file . 5
configuration file statements . 6

D
daytime . 23
debug, --debug option, described 41
debug, --debug option, summary 67
declaring prerequisites . 13
define, --define option, described 9
define, --define option, summary 67
dependencies . 66
dependency . 3
dependents . 3
disable . 12
discard . 23
docker . 57

dump-depmap option, --dump-depmap

option option, introduced 66

dump-depmap, --dump-depmap

option, summary . 67

E
echo . 23
escape sequence . 6
exec . 11
expandenv . 13, 18
external preprocessor . 8

F
force, --force option, summary 67
foreground, --foreground option, summary . . . 67

G
Global Configuration . 38
group . 77

H
here-document . 7
hup, --hup option, summary 68

94 GNU Pies Manual

I
id, piesctl . 43

include-directory,

--include-directory option, described 9

include-directory,

--include-directory option, summary 67
inetd . 11
inetd, --inetd option, described 37
inetd, --inetd option, summary 67
inetd-style components . 1, 21
inetd.conf . 36
init . 51
instance, --instance option, summary 67
internal . 13
internal flag . 23
internal services . 23

L
lint, --lint option, introduced 5
lint, --lint option, summary 67
list . 8

list-shutdown-sequence, --list-shutdown-

sequence option, summary 67

M
m4 . 8
mailer . 31
meta1-style components . 1, 26
multi-line comments . 6

N
no-init, --no-init option, summary 67

no-preprocessor, --no-preprocessor

option, summary . 67
nostartaccept . 11
Notification . 30
nullinput . 12

P
pass . 11
pass-fd . 11
pass-style components . 1
pies.conf . 5
piesctl id . 43
precious . 12
preprocessor . 8

preprocessor, --preprocessor

option, summary . 68
preprocessor, external . 8
prerequisite . 3
prerequisites, declaring . 13
privileges . 14, 39

Q
qotd . 23
quoted string . 6

R
rate, --rate option, summary 68
reload, --reload option, summary 68
repeater . 21
resolve . 13
respawn . 11
respawn components . 1

restart-component,

--restart-component option, described 65

restart-component,

--restart-component option, summary 68
return-code . 19

S
sendmail . 31
shell . 12, 18
shutdown . 11
shutdown components . 1
shutdown sequence . 39
siggroup . 13
simple statements . 6
single-line comments . 6
smtps . 1
sockenv . 13, 25
socket environment variables 25

source-info, --source-info

option, summary . 68
standard input . 12
startup . 11
startup components . 1
state files . 40
statement, block . 8
statement, simple . 6
statements, configuration file . 6
status, --status option, summary 68
stderr, --stderr option, summary 68
stdin . 12
stop, --stop option, described 65
stop, --stop option, summary 68
string, quoted . 6
string, unquoted . 6
syntax, --syntax option, summary 68
syslog, --syslog option, summary 68

Concept Index 95

T
tag (component) . 10
tcpmux . 13, 23
tcpmuxplus . 13
TCPMUX . 24

telinit option, --telinit option

option, introduced . 56
telinit, --telinit option, summary 68
time . 23

trace-depend, --trace-depend

option, summary . 68

trace-prereq, --trace-prereq

option, described . 66

trace-prereq, --trace-prereq

option, summary . 68

U
undefine, --undefine option, described 9
undefine, --undefine option, summary 69

W
wait . 13

X
xenv . 58

	Introduction
	Inter-Component Dependencies
	Pies Configuration File
	Configuration File Syntax
	Comments
	Statements

	Preprocessor
	Using M4
	Using Custom Preprocessor

	The component Statement
	Component Prerequisites
	Component Privileges
	Resources
	Environment
	env: legacy syntax.

	Early Environment Expansion
	Actions Before Startup
	Exit Actions
	Output Redirectors
	Inetd-Style Components
	Built-in Inetd Services
	TCPMUX Services
	Socket Environment Variables
	Exit Actions in Inetd Components

	Meta1-Style Components
	Component Visibility ACLs
	Component Syntax Summary

	Notification
	Access Control Lists
	The Control Statement
	User Identities for Accessing Control Interface
	Using inetd Configuration Files
	Using MeTA1 Configuration File
	Global Configuration
	Pies Privileges
	State Files

	Pies Debugging
	Communicating with Running pies Instances
	piesctl id -- Return Info About the Running Instance
	Instance Management
	piesctl config -- Configuration Management
	Component Management
	Init Process Management
	Piesctl Command Line Options
	Configuration for piesctl

	Init -- parent of all processes
	Runlevels
	Init Process Configuration
	Init Command Line
	Init Environment
	piesctl telinit
	The Telinit Command

	Using Pies as Entrypoint for Docker Container
	Expanding Environment Variables in GNU m4
	Using xenv

	Configuration Examples
	Simplest Case: Using Pies to Run Pmult
	Using Pies to Run Pmult and MeTA1
	Running Pies as Inetd

	Command Line Usage
	Pies Invocation
	How to Report a Bug
	Inetd.conf Format
	User-Group ACLs
	Control API
	/instance
	/conf
	/conf/files
	/conf/runime

	/programs
	/alive
	/runlevel
	/environ

	GNU Free Documentation License
	Concept Index

